Skip to main content
Log in

Integrals of inverse trigonometric and polylogarithmic functions

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In this paper we study the representation of integrals whose integrand involves the product of a polylogarithm and an inverse or inverse hyperbolic trigonometric function. We further demonstrate many connections between these integrals and Euler sums. We develop recurrence relations and give some examples of these integrals in terms of Riemann zeta values, Dirichlet values and other special functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablinger, J., Blümlein, J.: Harmonic sums, polylogarithms, special numbers, and their generalizations. In: Computer Algebra in Quantum Field Theory. Texts & Monographs in Symbolic Computation, pp. 1–32. Springer, Vienna (2013)

  2. Bailey, D.H., Borwein, J.M.: Computation and structure of character polylogarithms with applications to character Mordell–Tornheim–Witten sums. Math. Comput. 85(297), 295–324 (2016)

    Article  MathSciNet  Google Scholar 

  3. Choi, Junesang: Log-sine and log-cosine integrals. Honam Math. J. 35(2), 137–146 (2013)

    Article  MathSciNet  Google Scholar 

  4. Devoto, A., Duke, D.W.: Table of integrals and formulae for Feynman diagram calculations. Riv. Nuovo Cimento (3) 7(6), 1–39 (1984)

    Article  MathSciNet  Google Scholar 

  5. Espinosa, O., Moll, V.: On some integrals involving the Hurwitz zeta function: part 1. Ramanujan J. 6, 159–188 (2002)

    Article  MathSciNet  Google Scholar 

  6. Espinosa, O., Moll, V.: On some integrals involving the Hurwitz zeta function: part 2. Ramanujan J. 6, 440–468 (2002)

    MATH  Google Scholar 

  7. Flajolet, P., Salvy, B.: Euler sums and contour integral representations. Exp. Math. 7(1), 15–35 (1998)

    Article  MathSciNet  Google Scholar 

  8. Freitas, P.: Integrals of polylogarithmic functions, recurrence relations, and associated Euler sums. Math. Comput. 74(251), 1425–1440 (2005)

    Article  MathSciNet  Google Scholar 

  9. Kölbig, K.S.: Nielsen’s generalized polylogarithms. SIAM J. Math. Anal. 17(5), 1232–1258 (1986)

    Article  MathSciNet  Google Scholar 

  10. Lewin, R.: Polylogarithms and Associated Functions. North Holland, New York (1981)

    MATH  Google Scholar 

  11. Mezo, I.: A family of polylog-trigonometric integrals. Ramanujan J. 46, 161–171 (2018)

    Article  MathSciNet  Google Scholar 

  12. NIST: Digital Library of Mathematical Functions. https://www.dlmf.nist.gov

  13. Sofo, A.: Integral identities for sums. Math. Commun. 13(2), 303–309 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Sofo, A.: Quadratic alternating harmonic number sums. J. Number Theory 154, 144–159 (2015)

    Article  MathSciNet  Google Scholar 

  15. Sofo, A.: Summation formula involving harmonic numbers. Anal. Math. 37(1), 51–64 (2011)

    Article  MathSciNet  Google Scholar 

  16. Sofo, A.: New classes of harmonic number identities. J. Integer Seq. 15(7), Article 12.7.4 (2012)

  17. Sofo, A.: Integrals of polylogarithmic functions with negative argument. Acta Univ. Sapientiae Math. 10(2), 347–367 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Sofo, A.: Families of integrals of polylogarithmic functions, special functions and applications. In Choi J, Shilin I (eds) Mathematics, vol. 7, p. 143. MDPI AG, Basel (2019). https://doi.org/10.3390/math7020143

  19. Sofo, A., Cvijović, D.: Extensions of Euler harmonic sums. Appl. Anal. Discrete Math. 6(2), 317–328 (2012)

    Article  MathSciNet  Google Scholar 

  20. Sofo, A., Srivastava, H.M.: A family of shifted harmonic sums. Ramanujan J. 37(1), 89–108 (2015)

    Article  MathSciNet  Google Scholar 

  21. Xu, C., Yan, Y., Shi, Z.: Euler sums and integrals of polylogarithm functions. J. Number Theory 165, 84–108 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to a referee for carefully considered suggestions and meticulous reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Sofo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofo, A. Integrals of inverse trigonometric and polylogarithmic functions. Ramanujan J 54, 291–307 (2021). https://doi.org/10.1007/s11139-020-00319-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-020-00319-1

Keywords

Mathematics Subject Classification

Navigation