Skip to main content
Log in

A new approach to hypergeometric transformation formulas

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We give a new method to prove in a uniform and easy way various transformation formulas for Gauss hypergeometric functions. The key is Jacobi’s canonical form of the hypergeometric differential equation. Analogy for q-hypergeometric functions is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appell, P., Kampé de Fériet, J.: Fonctions Hypergéométriques et Hypersphériques. Gauthier Villars, Paris (1926)

    MATH  Google Scholar 

  2. Berndt, B.C.: Ramanujan’s Notebooks, Part II. Springer, New YorkNew York (1989)

    Book  Google Scholar 

  3. Berndt, B.C., Bhargava, S., Garvan, F.G.: Ramanujan’s theories of elliptic functions to alternative bases. Trans. Am. Math. Soc. 347(11), 4163–4244 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Borwein, J.M., Borwein, P.B.: A cubic counterpart of Jacobi’s identity and the AGM. Trans. Am. Math. Soc. 323(2), 691–701 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Borwein, J.M., Borwein, P.B., Garvan, F.G.: Some cubic modular identities of Ramanujan. Trans. Am. Math. Soc. 343(1), 35–47 (1994)

    Article  MathSciNet  Google Scholar 

  6. Chan, H.H.: On Ramanujan’s cubic transformation formula for \({}_2F_1(\frac{1}{3},\frac{2}{3};1;z)\). Math. Proc. Camb. Philos. Soc. 124(2), 193–204 (1998)

    Article  Google Scholar 

  7. Cooper, S.: Inversion formulas for elliptic functions. Proc. Lond. Math. Soc. 99, 461–483 (2009)

    Article  MathSciNet  Google Scholar 

  8. Erdélyi, A., et al. (eds.): Higher Transcendental Functions, vol. 1. McGrow-Hill, New York (1953)

    MATH  Google Scholar 

  9. Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  10. Gauss, C.F.: Determinatio seriei nostrae per aequationem differentialem secundi ordinis. In: Gauss, C.F. (ed.) Werke, vol. 3, pp. 207–230. Königlichen Gesellschaft der Wissenschaften, Göttingen (1876)

    Google Scholar 

  11. Goursat, É.: Sur l’équation différentielle linéaire, qui admet pour intégrale la série hypergéométrique. Ann. Sci. Éc. Norm. Sup. 10, 3–142 (1881)

    Article  Google Scholar 

  12. Heine, E.: Untersuchungen über die Reihe \(1+\frac{(1-q^\alpha )(1-q^\beta )}{(1-q)(1-q^\gamma )}\cdot x+ \frac{(1-q^\alpha )(1-q^{\alpha +1})(1-q^\beta )(1-q^{\beta +1})}{(1-q)(1-q^2)(1-q^\gamma )(1-q^{\gamma +1})}\cdot x^2+\cdots \). J. Reine Angew. Math. 34, 285–328 (1847)

    MathSciNet  Google Scholar 

  13. Iwasaki, K., Kimura, H., Shimomura, S., Yoshida, M.: From Gauss to Painlevé: A Modern Theory of Special Functions; Dedicated to Professor Tosihusa Kimura. Springer, New York (1992)

    MATH  Google Scholar 

  14. Jackson, F.H.: \(q\)-Difference equations. Am. J. Math. 32(4), 305–314 (1910)

    Article  Google Scholar 

  15. Jacobi, C.G.J.: Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe. J. Reine Angew. Math. 56, 149–165 (1859). In: C.G.J. Jacobi’s Gesammelte Werke, vol. 6, pp. 184–202. Cambridge University Press, Cambridge (2013)

  16. Karlsson, P.W.: Goursat’s hypergeometric transformations, revisited. In: Milovanović, G.V., Rassias, MTh (eds.) Analytic Number Theory, Approximation Theory, and Special Functions, pp. 721–736. Springer, New York (2014)

    Chapter  Google Scholar 

  17. Kato, T., Matsumoto, K.: The common limit of a quadruple sequence and the hypergeometric function \(F_D\) of three variables. Nagoya Math. J. 195, 113–124 (2009)

    Article  MathSciNet  Google Scholar 

  18. Koike, K., Shiga, H.: Isogeny formulas for the Picard modular form and a three terms arithmetic geometric mean. J. Number Theory 124, 123–141 (2007)

    Article  MathSciNet  Google Scholar 

  19. Kummer, E.E.: Über die hypergeometrische Reihe \(1+\frac{\alpha \cdot \beta }{1\cdot \gamma }x+\frac{\alpha (\alpha +1)\beta (\beta +1)}{1\cdot 2\cdot \gamma (\gamma +1)}x^2+\frac{\alpha (\alpha +1)(\alpha +2)\beta (\beta +1)(\beta +2)}{1\cdot 2\cdot 3\cdot \gamma (\gamma +1)(\gamma +2)}x^3+\cdots \), J. Reine Angew. Math. 15(39–83), pp. 127–172. Collected Papers II, Springer, Berlin 1975, 75–166 (1836)

  20. Lauricella, G.: Sulle Funzioni ipergeometrche a piu variabili. R. Circ. Mat. Palermo 7, 111–158 (1893)

    Article  Google Scholar 

  21. Maier, R.S.: Algebraic hypergeometric transformations of modular origin. Trans. Am. Math. Soc. 359(8), 3859–3885 (2007)

    Article  MathSciNet  Google Scholar 

  22. Maier, R.S.: On rationally parametrized modular equations. J. Ramanujan Math. Soc. 24(1), 1–73 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Matsumoto, K., Ohara, K.: Some transformation formulas for Lauricella’s hypergeometric functions \(F_D\). Funkcialaj Ekvacioj 52, 203–212 (2009)

    Article  MathSciNet  Google Scholar 

  24. Poole, E.G.C.: Introduction to the Theory of Differential Equations. Oxford University Press, Oxford (1936)

    MATH  Google Scholar 

  25. Ramanujan, S.: Notebooks (2 Volumes). Tata Institute of Fundamental Research, Bombay (1957)

    MATH  Google Scholar 

  26. Vidūnas, R.: Algebraic transformations of Gauss hypergeometric functions. Funkcialaj Ekvacioj 52, 139–180 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Ryojun Ito, Hiroyuki Ochiai, Nobuki Takayama and Raimundas Vidūnas for helpful discussions, and the referee for bibliographical remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Otsubo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by JSPS Grant-in-Aid for Scientific Research: 18K03234.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otsubo, N. A new approach to hypergeometric transformation formulas. Ramanujan J 55, 793–816 (2021). https://doi.org/10.1007/s11139-020-00286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-020-00286-7

Keywords

Mathematics Subject Classification

Navigation