Skip to main content
Log in

Combinatorial proofs and generalization of Bringmann, Lovejoy and Mahlburg’s overpartition theorems

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In 2013, Bringmann and Mahlburg defined a new type of partitions by adding a different restriction on the smallest parts in Gleissberg’s generalization of partitions considered by Schur. The generating function of this new Schur-type partitions is a mixed mock modular form, more precisely, it equals the product of the generating function of Gleissberg’s generalization and a specialization of a universal mock theta function \(g_3(x;q)\), where \(g_3(x;q)\) is Hickerson’s universal mock theta function of odd order. Gordon and McIntosh also found a second universal mock theta function of even order \(g_2(x;q)\). To give an analogue of Bringmann and Mahlburg’s result of these two Schur-type identities, with respect to \(g_2(x;q)\), Bringmann, Lovejoy and Mahlburg investigated two kinds of overpartitions and obtained two overpartition theorems which can be viewed as the overpartition analogues of Gleissberg’s generalization and Bringmann and Mahlburg’s theorem. The quotient of the generating functions of these two kinds of overpartitions is a specialization of \(g_2(x;q)\). At the end of their article, Bringmann et al. asked for a bijective proof of their first theorem. In this paper, we construct a bijection by employing the d-modular Ferrers diagram to prove their first theorem and also derive a new bi-parameter generating function for the second set of overpartitions. By this new generating function and a \(_3\phi _2\) transformation, we rediscover their second identity and a corollary. Inspired by a generalization of Schur’s theorem due to Andrews, we also give a generalization of Bringmann et al.’s first theorem which extends r, \(d-r\) to an integer set A and the modulus from 2d to td.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alladi, K., Gordon, B.: Generalizations of Schur’s partition theorem. Manuscripta Math. 79, 113–126 (1993)

    Article  MathSciNet  Google Scholar 

  2. Alladi, K., Gordon, B.: Schur’s partition theorem, companions, refinements, and generalizations. Trans. Am. Math. Soc. 347, 1591–1608 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Alladi, K.: Refinements of Rogers–Ramanujan type identities. In: Special Functions, q-Series and Related Topics, vol. 14 of Fields Inst. Commun., pp. 1–35 (1997)

  4. Andrews, G.E.: An analytic proof of the Rogers–Ramanujan–Gordon identities. Am. J. Math. 88, 844–846 (1966)

    Article  MathSciNet  Google Scholar 

  5. Andrews, G.E.: A new generalization of Schur’s second partition theorem. Acta Arith. 14, 429–434 (1968)

    Article  MathSciNet  Google Scholar 

  6. Andrews, G.E.: A general theorem on partitions with difference conditions. Am. J. Math. 91, 18–24 (1969)

    Article  MathSciNet  Google Scholar 

  7. Andrews, G.E.: Problems and prospects for basic hypergeometric functions. In: Theory and Application of Special Functions. Math. Res. Center, Univ. Wisconsin, Publ. No. 35, pp. 191–224. Academic Press, New York (1975)

  8. Andrews, G.E.: The Theory of Partitions. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1998). (Reprint of the 1976 original)

    MATH  Google Scholar 

  9. Bressoud, D.M.: A combinatorial proof of Schur’s 1926 partition theorem. Proc. Am. Math. Soc. 79(2), 338–340 (1980)

    MathSciNet  MATH  Google Scholar 

  10. Bringmann, K., Mahlburg, K.: Schur’s second partition theorem and mixed mock modular forms. submitted for publication. arXiv:1307.1800

  11. Bringamann, K., Lovejoy, J., Mahlburg, K.: A partition identity and the universal mock theta function \(g_2\). Math. Res. Lett. 23, 67–80 (2016)

    Article  MathSciNet  Google Scholar 

  12. Corteel, S., Lovejoy, J.: Overpartitions. Trans. Am. Math. Soc. 356, 1623–1635 (2004)

    Article  MathSciNet  Google Scholar 

  13. Corteel, S., Lovejoy, J.: An iterative-bijective approach to generalizations of Schurs theorem. Eur. J. Comb. 27, 496–512 (2006)

    Article  MathSciNet  Google Scholar 

  14. Chen, W.Y.C., Sang, D.D.M., Shi, D.Y.H.: The Rogers–Ramanujan–Gordon theorem for overpartitions. Proc. Lond. Math. Soc. 106(3), 1371–1393 (2013)

    Article  MathSciNet  Google Scholar 

  15. Dabholkar, A., Murthy, S., Zagier, D.: Quantum black holes, wall crossing, and mock modular forms. arXiv:1208.4074

  16. Dousse, J.: A generalisation of a second partition theorem of Andrews to overpartitions. J. Comb. Theory Ser. A. 118, 1451–1464 (2011)

    Article  MathSciNet  Google Scholar 

  17. Gleissberg, W.: Uber einen Satz von Herrn I. Schur. Math. Z. 28, 372–382 (1928)

    Article  MathSciNet  Google Scholar 

  18. Gordon, B.: A combinatorial generalization of the Rogers–Ramanujan identities. Am. J. Math. 83, 393–399 (1961)

    Article  MathSciNet  Google Scholar 

  19. Gordon, B., McIntosh, R.: A Survey of the Classical Mock Theta Functions. Partitions, \(q\)-Series, and Modular Forms. Dev. Math., vol. 23, pp. 95–244. Springer, New York (2012)

    MATH  Google Scholar 

  20. Hickerson, D.: A proof of the mock theta conjectures. Invent. Math. 94, 639–660 (1988)

    Article  MathSciNet  Google Scholar 

  21. Hickerson, D.: On the seventh order mock theta functions. Invent. Math. 94, 661–677 (1988)

    Article  MathSciNet  Google Scholar 

  22. Lovejoy, J.: A theorem on seven-colored overpartitions and its applications. Int. J. Number Theory 1(2), 215–224 (2005)

    Article  MathSciNet  Google Scholar 

  23. Lovejoy, J.: Overpartition theorems of the Rogers–Ramanujan type. J. Lond. Math. Soc. 69, 562–574 (2004)

    Article  MathSciNet  Google Scholar 

  24. MacMahon, P.A.: Combinatory Analysis, vol. II. Cambridge University Press, Cambridge (1960). (1915–1916, Reprinted: Chelsea, New York)

    MATH  Google Scholar 

  25. MacMahon, P.A.: The theory of modular partitions. Proc. Camb. Phil. Soc. 21, 197–204 (1923)

    MATH  Google Scholar 

  26. Ramanujan, S., Rogers, L.: Proof of certain identities in combinatory analysis. Math. Proc. Camb. Philos. Soc. 19, 211–216 (1919)

    MATH  Google Scholar 

  27. Rogers, L.J.: Second memoir on the expansion of certain infinite products. Proc. Lond. Math. Soc. 25, 318–343 (1894)

    MathSciNet  Google Scholar 

  28. Schur, I.: Ein Beitrag zur Additiven Zahlentheorie, pp. 302–321. Sitzungsber. Akad. Wiss., Berlin (1917)

    MATH  Google Scholar 

  29. Schur, I.J.: Zur Additiven Zahlentheorie, pp. 488–495. S.-B. Akad. Wiss, Berlin (1926)

    MATH  Google Scholar 

  30. Stembridge, J.: Hall–Littlewood functions, plane partitions, and the Rogers–Ramanujan identities. Trans. Am. Math. Soc. 319, 469–498 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We wish to thank the referees for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane Y. H. Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Science Foundation of China (Nos. 1140149, 11501089, 11971203) and the Scientific research project of the Educational Department of Liaoning Province(No. LN2019Q35).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, D.D.M., Shi, D.Y.H. Combinatorial proofs and generalization of Bringmann, Lovejoy and Mahlburg’s overpartition theorems. Ramanujan J 55, 539–554 (2021). https://doi.org/10.1007/s11139-020-00260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-020-00260-3

Keywords

Mathematics Subject Classification

Navigation