Skip to main content
Log in

Darboux evaluations for hypergeometric functions with the projective monodromy \(\hbox {PSL}(2,\mathbb {F}_7)\)

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Algebraic hypergeometric functions can be compactly expressed as radical functions on pull-back curves where the monodromy group is simpler, say, a finite cyclic group. These so-called Darboux evaluations have already been considered for algebraic \({}_{2}\text{ F }_{1}\)-functions. This article presents Darboux evaluations for the classical case of \({}_{3}\text{ F }_{2}\)-functions with the projective monodromy group \(\hbox {PSL}(2,\mathbb {F}_7)\). The pullback curves are of genus 0 (in the simplest case) or of genus 1. As an application of the genus 0 evaluations, appealing modular evaluations of the same \({}_{3}\text{ F }_{2}\)-functions are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Correspondingly, \((\#\Lambda )/7=24\) is the smallest degree of Darboux coverings that reduce the projective monodromy \(\Lambda \) to a cyclic group. But smaller degree Darboux coverings exist that give pull-back transformations to reducible monodromy representations. In [35], Darboux coverings of degree 21 of the considered Fuchsian equations are given. They transform the projective monodromy \(\Lambda \) to a dihedral group of order 8.

  2. The branching pattern (or the passport [17]) of a Belyi map gives the branching orders of all points in the 3 fibers \(\varphi =0\), \(\varphi =1\), \(\varphi =\infty \). Particularly, \(7^31^3\) prescribes 3 seven-fold points and 3 non-branching points in one fiber, while \(3^8\) prescribes all points to be threefold in other fiber, etc.

  3. We choose a different parametrization than in [7, p. 67] in order to have \(x_7(\tau )=O(q)\) in (4.23) with consistency.

  4. These are essentially the modular forms mentioned right after formula (4.1); see [8, Example 29]. Specifically, \(X=-\eta (\tau )^4\,K_3(\tau )\), \(Y=\eta (\tau )^4\,K_2(\tau )\), \(Z=\eta (\tau )^4\,K_1(\tau )\).

  5. There are these typos in [7]: Formula (4.19) is actually for \(j_7^{-1}\), not for \(j_7\). In formula (4.23), a minus sign is missing before \(\mathsf{y}^2\mathsf{z}/\mathsf{x}^3\). Formula (1.18) should be adjusted by \(40\Phi _4^2\Phi _6 (3\Phi _{14}^2+1008\Phi _4\Phi _6^4+56\Phi _4^2\Phi _6\Phi _{14}-832\Phi _4^4\Phi _6^2-256\Phi _4^7)\). In formula (4.35), the factor \(5\phi ^2-15\phi -7\) should be \(5\phi ^2-14\phi -7\).

References

  1. Berndt, B.C., Chan, H.H., Huang, S.S., Kang, S.-Y., Sohn, J., Son, S.H.: The Rogers–Ramanujan continued fraction. J. Comput. Appl. Math. 105, 9–24 (1999)

    Article  MathSciNet  Google Scholar 

  2. Beukers, F., Heckman, G.: Monodromy for the hypergeometric function \(_{n}F_{n-1}\). Invent. Math. 95, 325–354 (1989)

    Article  MathSciNet  Google Scholar 

  3. Brox, D.: The Riemann hypothesis and emergent phase space. J. Mod. Phys. 8, 459–482 (2017)

    Article  Google Scholar 

  4. Cummins, C.J., Pauli, S.: Congruence subgroups of \(\text{ PSL }(2,\mathbb{Z})\) of genus less than or equal to \(24\). Exp. Math. 12, 243–255 (2003)

    Article  MathSciNet  Google Scholar 

  5. Diamond, F., Shurman, J.: A First Course in Modular Forms. Graduate Texts in Mathematics, vol. 228. Springer, New York (2005)

    MATH  Google Scholar 

  6. Duke, W.: Continued fractions and modular functions. Bull. Am. Math. Soc. 42, 137–162 (2005)

    Article  MathSciNet  Google Scholar 

  7. Elkies, N.: The Klein quartic in number theory. pp. 51–101 in [18]

  8. Franc, C., Mason, G.: Hypergeometric series, modular linear differential equations and vector-valued modular forms. Ramanujan J. 41, 233–267 (2016)

    Article  MathSciNet  Google Scholar 

  9. Halphen, G.-H.: Sur une équation différentielle linéaire du troisiéme ordre. Math. Annalen 24, 461–464 (1884)

    Article  MathSciNet  Google Scholar 

  10. Hoshino, K.: The Belyi functions and dessin d’enfant corresponding to the non-normal inclusions of triangle groups. Math. J. Okayama Univ. 52, 45–60 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Hurwitz, A.: Ueber einige besondere homogene lineare Differentialgleichungen. Math. Annalen 26, 117–126 (1886)

    Article  MathSciNet  Google Scholar 

  12. Hurwitz, A.: Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Annalen 41, 403–442 (1893)

    Article  Google Scholar 

  13. Kaneko, M.: On modular forms of weight \((6n+1)/5\) satisfying a certain differential equation. In: Zhang, W., Tanigawa, Y. (eds.) Number Theory, Developments in Mathematics, vol. 15, pp. 97–102. Springer, Boston (2006)

    Chapter  Google Scholar 

  14. Kato, M.: Algebraic transformations of \({}_{3}\text{ F }_{2}\). Kyushu J. Math. 51, 221–243 (2008)

    MathSciNet  Google Scholar 

  15. Kato, M.: Schwarz images of algebraic \({}_{3}\text{ F }_{2}\). Kyushu J. Math. 65, 299–333 (2011)

    Article  MathSciNet  Google Scholar 

  16. Klein, F.: Ueber die Transformation siebenter Ordnung der elliptischen Functionen. Math. Annalen 14, 428–471 (1879). An English translation is [18, pg. 287–331]

    Article  MathSciNet  Google Scholar 

  17. Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and their Applications, Vol 141 of Encyclopedia of Mathematical Sciences. Springer, New York (2004)

    Book  Google Scholar 

  18. Levy, S. (ed.): The Eightfold Way: The Beauty of Klein’s Quartic Curve. MSRI Publications 35, Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  19. Llibre, J., Zhang, X.: Darboux theory of integrability for polynomial vector fields in \(\mathbb{R}^n\) taking into account the multiplicity at infinity. Bull. Sci. Math. 133, 765–778 (2009)

    Article  MathSciNet  Google Scholar 

  20. Macbeath, A.M.: Hurwitz groups and surfaces. pg. 103–113 in [18]

  21. Maier, R.S.: Algebraic hypergeometric transformations of modular origin. Trans. Am. Math. Soc. 359, 3859–3885 (2007)

    Article  MathSciNet  Google Scholar 

  22. Rainville, E.D.: The contiguous function relations for \(_{p}\text{ F }_{q}\) with applications to Bateman’s \(J_n^{u, v}\) and Rice’s \(H_n(\zeta, p, v)\). Bull. Am. Math. Soc. 51, 714–723 (1945)

    Article  MathSciNet  Google Scholar 

  23. Rogers, L.J., Ramanujan, S.: Proof of certain identities in combinatory analysis. Camb. Phil. Soc. Proc. 19, 211–216 (1919)

    MATH  Google Scholar 

  24. Schwarz, H.A.: Über diejenigen Fälle in welchen die Gaussische hypergeometrische Reihe einer algebraische Funktion ihres vierten Elementes darstellt. Crelle J. 75, 292–335 (1873)

    Google Scholar 

  25. Selberg, A.: Über einige arithmetische Identitäten. Avh. Norske Vidensk.- Akad. Oslo I 8, 23S (1936)

    MATH  Google Scholar 

  26. Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math. 6, 274–304 (1954)

    Article  MathSciNet  Google Scholar 

  27. Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, Dordrecht (2009)

    Book  Google Scholar 

  28. Stack Exchange website, Hypergeometric formulas for the Rogers–Ramanujan identities?, (2014). https://math.stackexchange.com/questions/171589

  29. Subbarao, M.V., Vidyasagar, M.: On Watson’s quintuple product identity. Proc. Am. Math. Soc. 26, 23–27 (1970)

    MathSciNet  MATH  Google Scholar 

  30. van der Put, M., Ulmer, F.: Differential equations and finite groups. J. Algebr. 226, 920–966 (2000)

    Article  MathSciNet  Google Scholar 

  31. Vidunas, R.: Transformations of some Gauss hypergeometric functions. J. Comput. Appl. Math. 178, 473–487 (2005)

    Article  MathSciNet  Google Scholar 

  32. Vidunas, R.: Algebraic transformations of Gauss hypergeometric functions. Funkcialaj Ekvacioj 52, 139–180 (2009)

    Article  MathSciNet  Google Scholar 

  33. Vidunas, R.: Dihedral Gauss hypergeometric functions. Kyushu J. Math. 65, 141–167 (2011)

    Article  MathSciNet  Google Scholar 

  34. Vidunas, R.: Darboux evaluations of algebraic Gauss hypergeometric functions. Kyushu J. Math. 67, 249–280 (2013)

    Article  MathSciNet  Google Scholar 

  35. Vidunas, R.: Dihedral evaluations of hypergeometric functions with the Kleinian projective monodromy. Integr. Transform. Spec. Funct. 30, 316–333 (2019)

    Article  MathSciNet  Google Scholar 

  36. Weil, J.A.: Constant et polynómes de Darboux en algébre différentielle: applications aux systémes différentiels linéaires. Ph.D. thesis, École Polytechnique, (1995)

  37. Zagier, D.: Elliptic modular forms and their applications. pp. 1–103 in Bruinier, J.H., van der Geer, G., Harder, G., Zagier, D., The 1-2-3 of Modular Forms, UK: Springer (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimundas Vidunas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidunas, R. Darboux evaluations for hypergeometric functions with the projective monodromy \(\hbox {PSL}(2,\mathbb {F}_7)\). Ramanujan J 53, 85–121 (2020). https://doi.org/10.1007/s11139-019-00229-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-019-00229-x

Keywords

Mathematics Subject Classification

Navigation