Skip to main content

Note on the number of zeros of \(\zeta ^{(k)}(s)\)


Assuming the Riemann hypothesis, we prove that

$$\begin{aligned} N_k(T) = \frac{T}{2\pi }\log \frac{T}{4\pi e} + O_k\bigg (\frac{\log T}{\log \log T}\bigg ), \end{aligned}$$

where \(N_k(T)\) is the number of zeros of \(\zeta ^{(k)}(s)\) in the region \(0<\mathfrak {I}s\le T\). We further apply our method and obtain a zero counting formula for the derivative of Selberg zeta functions, improving earlier work of Luo (Am J Math 127(5):1141–1151, 2005).

This is a preview of subscription content, access via your institution.


  1. 1.

    Akatsuka, H.: Conditional estimates for error terms related to the distribution of zeros of \(\zeta ^{\prime }(s)\). J. Number Theory 132(10), 2242–2257 (2012)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Berndt, B.C.: The number of zeros for \(\zeta ^{(k)}(s)\). J. Lond. Math. Soc. (2) 2, 577–580 (1970)

    Article  Google Scholar 

  3. 3.

    Carneiro, E., Chandee, V., Milinovich, M.B.: Bounding \(S(t)\) and \(S_1(t)\) on the Riemann hypothesis. Math. Ann. 356, 939–968 (2013)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Farmer, D.W., Gonek, S.M., Hughes, C.P.: The maximum size of L-functions. J. Reine Angew. Math. 609, 215–236 (2007)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Ge, F.: The number of zeros of \(\zeta ^{\prime }(s)\). Int. Math. Res. Not. IMRN 5, 1578–1588 (2017)

    MATH  Google Scholar 

  6. 6.

    Ge, F.: The number of zeros of \(L^{\prime }(s,\chi )\). Acta Arith. 190(2), 127–138 (2019)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Goldston, D.A., Gonek, S.M.: A note on \(S(t)\) and the zeros of the Riemann zeta-function. Bull. Lond. Math. Soc. 39, 482–486 (2007)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Levinson, N., Montgomery, H.L.: Zeros of the derivative of the Riemann zeta-function. Acta Math. 133, 49–65 (1974)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Littlewood, J.E.: On the zeros of the Riemann zeta-function. Proc. Camb. Philos. Soc. 22, 295–318 (1924)

    Article  Google Scholar 

  10. 10.

    Luo, W.: On the zeros of the derivative of the Selberg zeta function. Am. J. Math. 127(5), 1141–1151 (2005)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Selberg, A.: On the remainder in the formula for \(N(T)\), the number of zeros of \(\zeta (s)\) in the strip \(0< t< T\). Avhandlinger utgitt av Det Norske Videnskaps-Akademi i Oslo I. Mat.-Naturv. Klasse 1, 1–27 (1944)

  12. 12.

    Selberg, A.: Contributions to the theory of Dirichlet’s L-functions. Skr. Norske Vid.-Akad., Oslo I. 3, 1–62 (1946)

  13. 13.

    Speiser, A.: Geometrisches zur Riemannschen Zetafunktion. Math. Ann. 110, 514–521 (1935)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Spira, R.: Another zero-free region for \(\zeta ^{(k)}(s)\). Proc. Am. Math. Soc. 26, 246–247 (1970)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Suriajaya, A.I.: On the zeros of the \(k\)-th derivative of the Riemann zeta function under the Riemann hypothesis. Funct. Approx. Comment. Math. 53, 69–95 (2015)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Suriajaya, A.I.: Two estimates on the distribution of zeros of the first derivative of Dirichlet L-functions under the generalized Riemann hypothesis. Journal de Théorie des Nombres de Bordeaux 29(2), 471–502 (2017)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Titchmarsh, E.C.: In: D.R. Heath-Brown (ed.) The Theory of the Riemann Zeta-Function, 2nd edn. Oxford Science Publications, Oxford (1986)

  18. 18.

    Zhang, Y.: On the zeros of \(\zeta ^{\prime }(s)\) near the critical line. Duke Math. J. 110, 555–572 (2001)

    MathSciNet  Article  Google Scholar 

Download references


This project was started when the first author was a postdoc fellow at the University of Waterloo and the second author was a member of iTHEMS under RIKEN Special Postdoctoral Researcher program.

Author information



Corresponding author

Correspondence to Fan Ge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ade Irma Suriajaya is supported by JSPS KAKENHI Grant Number 18K13400.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ge, F., Suriajaya, A.I. Note on the number of zeros of \(\zeta ^{(k)}(s)\). Ramanujan J 55, 661–672 (2021).

Download citation


  • Riemann zeta function
  • Derivatives of Riemann zeta function
  • Riemann Hypothesis

Mathematics Subject Classification

  • 11M06