Abstract
Let C and D denote positive integers such that \(CD>1\). In this paper we investigate the solvability of the Diophantine equation \(Cx^{2}+D=2y^{q}\), in positive integers x, y and odd prime number q where \(CD\not \equiv 3 \pmod 4\) and CD is squarefree.
Similar content being viewed by others
References
Abu Muriefah, F.S., Luca, F., Siksek, S., Tengely, Sz: On the Diophantine equation \(x^{2}+C=2y^{n}\). Int. J. Number Theory 5(6), 1117–1128 (2009)
Bilu, Y., Hanrot, G., Voutier, P.M.: Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math. 539, 75–122 (2001)
Cesaro, E.: Solution to problem \(570 \) (proposed by Gelin). Nouv. Corresp. Math. 6, 423–24 (1880)
Cohn, J.H.E.: Perfect Pell powers. Glasgow Math. J. 38, 19–20 (1996)
Debnath, L.: A short history of the Fibonacci and golden numbers with their applications. Internat. J. Math. Edu. Sci. Tech. 42(3), 337–367 (2011)
Keskin, R., Yosma, Z.: On Fibonacci and Lucas numbers of the form \(Cx^{2}\). J. Int. Seq. 14, 1–12 (2011)
Ljunggren, W.: On the Diophantine equation \(Cx^{2}+D=2y^{n}\). Math. Scand. 18, 69–86 (1966)
McDaniel, W.L.: The G. C. D. in Lucas sequences and Lehmer number sequences. Fibonacci Q. 29(1991), 24–30 (1988)
Pink, I., Tengely, S.: Full powers in arithmetic progressions. Publ. Math. Debr. 57, 535–545 (2000)
Robbins, N.: Fibonacci numbers of the form \(Cx^{2}\), where \( C < 1000\). Fibonacci Q. 28, 306–315 (1990)
Schinzel, A., Tijdeman, R.: On the Diophantine equation \(y^{m}=P(x)\). Acta Arith. 31, 199–204 (1976)
Tengely, S.: On the Diophantine equation \(x^{2}+a^{2}=2y^{n}\). Indag. Math. 15, 291–304 (2004)
Tengely, S.: On the Diophantine equation \(x^{2}+q^{2}=2y^{p}\). Acta Arith. 127, 71–86 (2007)
Zhu, H., Le, M., Togbe, A.: On the exponential Diophantine equation \(x^{2}+p^{2m}=2y^{n}\). Bull. Aust. Math. Soc. 86, 303–314 (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ghanmi, N., Abu Muriefah, F.S. On the Diophantine equation \(Cx^{2}+D=2y^{q}\). Ramanujan J 53, 389–397 (2020). https://doi.org/10.1007/s11139-019-00165-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11139-019-00165-w