Skip to main content
Log in

Congruences involving the \(U_{\ell }\) operator for weakly holomorphic modular forms

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let \(\lambda \) be an integer, and \(f(z)=\sum _{n\gg -\infty } a(n)q^n\) be a weakly holomorphic modular form of weight\(\lambda +\frac{1}{2}\) on \(\Gamma _0(4)\) with integral coefficients. Let \(\ell \ge 5\) be a prime. Assume that the constant term a(0) is not zero modulo \(\ell \). Further, assume that, for some positive integer m, the Fourier expansion of \((f|U_{\ell ^m})(z) = \sum _{n=0}^\infty b(n)q^n\) has the form

$$\begin{aligned} (f|U_{\ell ^m})(z) \equiv b(0) + \sum _{i=1}^{t}\sum _{n=1}^{\infty } b(d_i n^2) q^{d_i n^2} \pmod {\ell }, \end{aligned}$$

where \(d_1, \ldots , d_t\) are square-free positive integers, and the operator \(U_\ell \) on formal power series is defined by

$$\begin{aligned} \left( \sum _{n=0}^\infty a(n)q^n \right) \bigg | U_\ell = \sum _{n=0}^\infty a(\ell n)q^n. \end{aligned}$$

Then, \(\lambda \equiv 0 \pmod {\frac{\ell -1}{2}}\). Moreover, if \({\tilde{f}}\) denotes the coefficient-wise reduction of f modulo \(\ell \), then we have

$$\begin{aligned} \biggl \{ \lim _{m \rightarrow \infty } {\tilde{f}}|U_{\ell ^{2m}}, \lim _{m \rightarrow \infty } {\tilde{f}}|U_{\ell ^{2m+1}} \biggr \} = \biggl \{ a(0)\theta (z), a(0)\theta ^\ell (z) \in \mathbb {F}_{\ell }[[q]] \biggr \}, \end{aligned}$$

where \(\theta (z)\) is the Jacobi theta function defined by \(\theta (z) = \sum _{n\in \mathbb {Z}} q^{n^2}\). By using this result, we obtain the distribution of the Fourier coefficients of weakly holomorphic modular forms in congruence classes. This applies to the congruence properties for traces of singular moduli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlgren, S., Boylan, M.: Coefficients of half-integral weight modular forms modulo $\ell ^j$. Math. Ann. 331, 219–239 (2005)

    Article  MathSciNet  Google Scholar 

  2. Ahlgren, S., Boylan, M.: Central critical values of modular $L$-functions and coefficients of half-integral weight modular forms modulo $\ell $. Am. J. Math. 129(2), 429–454 (2007)

    Article  MathSciNet  Google Scholar 

  3. Ahlgren, S., Ono, K.: Arithmetic of singular moduli and class equations. Compos. Math. 141, 293–312 (2005)

    Article  MathSciNet  Google Scholar 

  4. Ahlgren, S., Choi, D., Rouse, J.: Congruences for level four cusp forms. Math. Res. Lett. 16(4), 683–701 (2009)

    Article  MathSciNet  Google Scholar 

  5. Boylan, M.: 2-adic properties of Hecke traces of singular moduli. Math. Res. Lett. 12(4), 593–609 (2005)

    Article  MathSciNet  Google Scholar 

  6. Bruinier, J.H.: On a theorem of Vignéras. Abh. Math. Sem. Univ. Hamburg 68, 163–168 (1998)

    Article  MathSciNet  Google Scholar 

  7. Bruinier, J.H.: Non-vanishing modulo $\ell $ of Fourier coefficients of half-integral weight modular forms. Duke Math. J. 98, 595–611 (1999)

    Article  MathSciNet  Google Scholar 

  8. Bruinier, J.H., Ono, K.: Coefficients of half-integral weight modular forms. J. Number Theory 99(1), 164–179 (2003)

    Article  MathSciNet  Google Scholar 

  9. Choi, D.: Modular forms of half-integral weight with few non-vanishing coefficients modulo $\ell $. Proc. Am. Math. Soc. 136(8), 2683–2688 (2008)

    Article  MathSciNet  Google Scholar 

  10. Choi, D.: Weakly holomorphic modular forms of half-integral weight with nonvanishing constant terms modulo $\ell $. Trans. Am. Math. Soc. 361(7), 3817–3828 (2009)

    Article  MathSciNet  Google Scholar 

  11. Choi, D.: Congruences involving arithmetic progressions for weakly holomorphic modular forms. Adv. Math. 294, 489–516 (2016)

    Article  MathSciNet  Google Scholar 

  12. Choi, D., Kilbourn, T.: The weight of half-integral weight modular forms with few non-vanishing coefficients mod $\ell $. Acta Arith. 127(2), 193–197 (2007)

    Article  MathSciNet  Google Scholar 

  13. Cohen, H.: Sums involving the values at negative integers of $L$-functions of quadratic characters. Math. Ann. 217(3), 271–285 (1975)

    Article  MathSciNet  Google Scholar 

  14. Diamond, F., Im, J.: Modular forms and modular curves. In: Seminar on Fermat’s Last Theorem (Toronto, ON, 1993–1994) (CMS Conference Proceedings 17), pp. 39–133. American Mathematical Society, Providence (1995)

  15. Gross, B.H.: A tameness criterion for Galois representations attached to modular forms (mod p). Duke Math. J. 61(2), 445–517 (1990)

    Article  MathSciNet  Google Scholar 

  16. Guerzhoy, P.: Some congruences for traces of singular moduli. J. Number Theory 122, 151–156 (2007)

    Article  MathSciNet  Google Scholar 

  17. Jochnowitz, N.: Congruences between systems of eigenvalues of modular forms. Trans. Am. Math. Soc. 270(1), 269–285 (1982)

    Article  MathSciNet  Google Scholar 

  18. Lang, S.: Introduction to modular forms. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 222. Springer, Berlin. With appendixes by D. Zagier and W. Feit, Corrected reprint of the 1976 original (1995)

  19. Ligozat, G.: Courbes modulaires de genre $1$, Société Mathématique de France, Paris, 1975. Bull. Soc. Math. France, Mém. 43, Supplément au Bull. Soc. Math. France Tome 103(3)

  20. Katz, N.: A Result on Modular Forms in Characteristic $p$. Lecture Notes in Mathematics, vol. 601 (Modular Functions of One Variable, V). Springer, Berlin, pp. 53–61 (1977)

  21. Ono, K., Skinner, C.: Fourier coefficients of half-integral weight modular forms modulo $\ell $. Ann. Math. (2) 147(2), 453–470 (1998)

  22. Serre, J.-P.: Formes modulaires et fonctions zeta $p$-adiques (French). In: Modular Functions of One Variable, III (Proceedings of International Summer School, University of Antwerp, 1972), pp. 191–268. Lecture Notes in Mathematics, vol. 350. Springer, Berlin (1973)

  23. Swinnerton-Dyer, H.P.F.: On $\ell $-adic Representations and Congruences for Coefficients of Modular Forms. Springer Lecture Notes, vol. 350, pp. 1–55. Springer, Berlin (1973)

  24. Treneer, S.: Congruences for the coefficients of weakly holomorphic modular forms. Proc. Lond. Math. Soc. (3) 93, 304–324 (2006)

  25. Tupan, A.: Congruences for $\Gamma _1(4)$-modular forms of half-integral weight. Ramanujan J. 11(2), 165–173 (2006)

    Article  MathSciNet  Google Scholar 

  26. Vignéras, M. F.: Facteurs gamma et équations fonctionnelles. Lecture Notes in Mathematics, vol. 627 (Modular Functions of One Variable VI), pp. 79–103. Springer, Berlin (1977)

  27. Zagier, D.: Traces of Singular Moduli, Motives, Polylogarithms and Hodge Theory, Part I (Irvine, CA, 1998). International Press Lecture Series, 3, I, pp. 211–244. International Press, Somerville (2002)

Download references

Acknowledgements

The authors are grateful to the referee for useful comments. The authors also thank Scott Ahlgren for helpful comments on the previous version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subong Lim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, D., Lim, S. Congruences involving the \(U_{\ell }\) operator for weakly holomorphic modular forms. Ramanujan J 51, 671–688 (2020). https://doi.org/10.1007/s11139-019-00154-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-019-00154-z

Keywords

Mathematics Subject Classification

Navigation