Universal sums of generalized pentagonal numbers

  • Jangwon JuEmail author


For an integer x, an integer of the form \(P_5(x)=\frac{3x^2-x}{2}\) is called a generalized pentagonal number. For positive integers \(\alpha _1,\dots ,\alpha _k\), a sum \(\Phi _{\alpha _1,\dots ,\alpha _k}(x_1,x_2,\dots ,x_k)=\alpha _1P_5(x_1)+\alpha _2P_5(x_2)+\cdots +\alpha _kP_5(x_k)\) of generalized pentagonal numbers is called universal if \(\Phi _{\alpha _1,\dots ,\alpha _k}(x_1,x_2,\dots ,x_k)=N\) has an integer solution \((x_1,x_2,\dots ,x_k) \in {\mathbb {Z}}^k\) for any non-negative integer N. In this article, we prove that there are exactly 234 proper universal sums of generalized pentagonal numbers. Furthermore, the “pentagonal theorem of 109” is proven, which states that an arbitrary sum \(\Phi _{\alpha _1,\dots ,\alpha _k}(x_1,x_2,\dots ,x_k)\) is universal if and only if it represents the integers 1, 3, 8, 9, 11, 18, 19, 25, 27, 43, 98, and 109.


Generalized pentagonal numbers Pentagonal theorem of 109 

Mathematics Subject Classification

11E12 11E20 



  1. 1.
    Bhargava, M.: On the Conway–Schneeberger fifteen theorem. Contemp. Math. 272, 27–38 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bhargava, M., Hanke, J.: Universal quadratic forms and the 290 theorem. Invent. Math. (to appear)Google Scholar
  3. 3.
    Bosma, W., Kane, B.: The triangular theorem of eight and representation by quadratic polynomials. Proc. Am. Math. Soc. 141, 1473–1486 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dickson, L.E.: Quaternary quadratic forms representing all integers. Am. J. Math. 49, 39–56 (1927)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Jagy, W.C.: Five regular or nearly-regular ternary quadratic forms. Acta Arith. 77, 361–367 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Jones, B.W.: Representation by Positive Ternary Quadratic Forms. Unpublished PhD dissertation, University of Chicago (1928)Google Scholar
  7. 7.
    Ju, J., Oh, B.-K.: Universal sums of generalized octagonal numbers. J. Number Theory 190, 292–302 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ju, J., Oh, B.-K., Seo, B.: Ternary universal sums of generalized polygonal numbers. Int. J. Number Theory (to appear)Google Scholar
  9. 9.
    Kitaoka, Y.: Arithmetic of Quadratic Forms. Cambridge University Press, Cambridge (1993)CrossRefzbMATHGoogle Scholar
  10. 10.
    Oh, B.-K.: Regular positive ternary quadratic forms. Acta Arith. 147, 233–243 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Oh, B.-K., Yu, H.: Completely \(p\)-primitive binary quadratic forms. J. Number Theory 193, 373–385 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Oh, B.-K.: Ternary universal sums of generalized pentagonal numbers. J. Korean Math. Soc. 48, 837–847 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    O’Meara, O.T.: Introduction to Quadratic Forms. Springer, New York (1963)CrossRefzbMATHGoogle Scholar
  14. 14.
    Sun, Z.-W.: A result similar to Lagrange’s theorem. J. Number Theory 162, 190–211 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sun, Z.-W.: On universal sums of polygonal numbers. Sci. China Math. 58, 1367–1396 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of UlsanUlsanRepublic of Korea

Personalised recommendations