Advertisement

The Ramanujan Journal

, Volume 46, Issue 2, pp 345–356 | Cite as

Duhamel convolution product in the setting of quantum calculus

  • F. Bouzeffour
  • M. T. Garayev
Article
  • 79 Downloads

Abstract

In this paper, we introduce the notions of the q-Duhamel product and q-integration operator. We prove that the classical Wiener algebra \(W_+(\mathbb {D})\) of all analytic functions on the unit disc \(\mathbb {D}\) of the complex plane \(\mathbb {C}\) with absolutely convergent Taylor series extended to the boundary is a Banach algebra with respect to the q-Duhamel product. We also describe the cyclic vectors of the q-integration operator on \(W_+(\mathbb {D})\) and characterize its commutant in terms of the q-Duhamel product operators.

Keywords

Duhamel product q-Difference operator q-Integral q-special functions q-Duhamel product 

Mathematics Subject Classification

Primary 33D45 Secondary 96J15 

Notes

Acknowledgements

The authors thank the referee for his valuable remarks and suggestions, which improved the paper.

References

  1. 1.
    Askey, R.A.: Continuous \(q\)-Hermite polynomials when \(q \ge 1\). In: D. Stanton (Ed.), \(q\)-Series and Partitions. IMA Volumes in Mathematics and Its Applications, pp. 151–158. Springer, New YorkGoogle Scholar
  2. 2.
    Bouzeffour, F.: Basic Fourier transform on the space of entire functions of logarithm order 2. Adv. Differ. Equ. 2012, 184 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bozhinov, N.: Convolutional Representations of Commutants and Multipliers. Publishing House of the Bulgarian Academy of Science, Sofia (1988)zbMATHGoogle Scholar
  4. 4.
    Dimovski, I.H.: Convolutions Calculus. Kluwer, Dordrecht (1990)CrossRefGoogle Scholar
  5. 5.
    Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd Edition. Encyclopedia of Mathematics and Its Applications, vol. 96. Cambridge University Press, Cambridge (2004)Google Scholar
  6. 6.
    Guediri, H., Garayev, M.T., Sadraoui, H.: The Bergman space as a Banach algebra. New York J. Math. 21, 339–350 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable, Paperback edn. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  8. 8.
    Ismail, M.E.H., Rahman, M.: Inverse operators, \(q\)-fractional integrals, and \(q\)-Bernoulli polynomials. J. Approx. Theory 114, 269–307 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jackson, F.H.: On \(q\)-functions and a certain difference operator. Trans. R. Soc. Edinb. 46, 253–281 (1909)CrossRefGoogle Scholar
  10. 10.
    Jackson, F.H.: On a \(q\)-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)zbMATHGoogle Scholar
  11. 11.
    Karaev, M.T.: On some applications of ordinary and extended Duhamel products. (Russian) Sibirsk. Mat. Zh. 46(2005), 553–566; translation in Siberian Math. J. 46 431–442 (2005)Google Scholar
  12. 12.
    Karaev, M.T., Saltan, S.: A Banach algebra structure for the Wiener algebra \(W(\mathbb{D})\) of the disc. Complex Var. Theory Appl. 50, 299–305 (2005)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Karaev, M.T., Tuna, H.: Description of maximal ideal space of some Banach algebra with multiplication as Duhamel product. Complex Var. Theory Appl. 49(2004), 449–457 (2004)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Koornwinder, T.H.: Special functions and \(q\)-commuting variables. In: Special Functions, \(q\)-Series and Related Topics (Toronto, ON, 1995), Fields Institute Communications, vol. 14, pp. 131–166. American Mathematical Society, Providence, RI. arXiv:q-alg/9608008 (1997)
  15. 15.
    Mikusiński, J.: Operational Calculus. Pergamon Press, London (1959)zbMATHGoogle Scholar
  16. 16.
    Wigley, N.M.: The Duhamel product of analytic functions. Duke Math. J. 41, 211–217 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wigley, N.M.: A Banach algebra structure for \(H^P\). Can. Math. Bull. 18, 597–603 (1975)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, College of SciencesKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations