Linear independence of harmonic numbers over the field of algebraic numbers

  • Tapas ChatterjeeEmail author
  • Sonika Dhillon


Let \(H_n =\sum _{k=1}^n \frac{1}{k}\) be the nth harmonic number. Euler extended it to complex arguments and defined \(H_r\) for any complex number r except for the negative integers. In this paper, we give a new proof of the transcendental nature of \(H_r\) for rational r. For some special values of \(q>1,\) we give an upper bound for the number of linearly independent harmonic numbers \(H_{a/q}\) with \( 1 \le a \le q\) over the field of algebraic numbers. Also, for any finite set of odd primes J with \(|J|=n,\) define
$$\begin{aligned} W_J=\overline{{\mathbb {Q}}}-\text {span of } \big \{H_1, H_{a_{j_i}/q_i} | 1 \le a_{j_i} \le q_i -1, \; 1 \le j_i \le q_i-1, \;\forall q_i \in J\big \}. \end{aligned}$$
Finally, we show that
$$\begin{aligned} \text { dim }_{\overline{{\mathbb {Q}}}} ~W_J=\sum \limits _{\begin{array}{c} i=1 \\ q_i \in J \end{array}}^n \frac{\phi (q_i )}{2} + 2. \end{aligned}$$


Baker’s Theory Digamma function Galois theory Gauss formula Harmonic Numbers Linear forms in logarithm Linear independence 

Mathematics Subject Classification

Primary 11J81 11J86 Secondary 11J91 



The authors thank Prof. M. Ram Murty for his comments on an earlier version of this paper. The authors would like to thank the referee for his insightful suggestions. The authors also thank Mr. Suraj Singh Khurana for his help in the revision process of this article. The first author would like to thank Université Pierre et Marie Curie (University of Paris VI) for the hospitality where some part of the work was done and the National Board for Higher Mathematics for the partial support.


  1. 1.
    Baker, A.: Transcendental Number Theory. Cambridge University Press, Cambridge (1975)CrossRefGoogle Scholar
  2. 2.
    Bass, H.: Generators and relations for cyclotomic units. Nagoya Math. J. 27(Part 2), 401–407 (1966)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chatterjee, T., Dhillon, S.: Linear independence of harmonic numbers over the field of algebraic numbers II. PreprintGoogle Scholar
  4. 4.
    Chatterjee, T., Gun, S.: The digamma function, Euler–Lehmer constants and their p-adic counterparts. Acta Arith. 162(2), 197–208 (2014)Google Scholar
  5. 5.
    Chatterjee, T., Khurana, S.S.: Erdősian functions and an identity of Gauss (submitted)Google Scholar
  6. 6.
    Chatterjee, T., Murty, M.R.: Non-vanishing of Dirichlet series with periodic coefficients. J. Number Theory 145, 1–21 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chatterjee, T., Ram Murty, M., Pathak, S.: A vanishing criterion for Dirichlet series with periodic coefficients. Contemp. Math. 701, 69–80 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ennola, V.: On relations between cyclotomic units. J. Number Theory 4, 236–247 (1972)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ram Murty, M., Kumar Murty, V.: A problem of Chowla revisited. J. Number Theory 131(9), 1723–1733 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ram Murty, M., Saradha, N.: Transcendental values of the digamma function. J. Number Theory 125, 298–318 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ram Murty, M., Saradha, N.: Euler-Lehmer constants and a conjecture of Erdös. J. Number Theory 130(12), 2671–2682 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology RoparRupnagarIndia

Personalised recommendations