Skip to main content
Log in

Periodic points of algebraic functions and Deuring’s class number formula

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

The exact set of periodic points in \(\overline{\mathbb {Q}}\) of the algebraic function \({\hat{F}}(z)=(-1\pm \sqrt{1-z^4})/z^2\) is shown to consist of the coordinates of certain solutions \((x,y)=(\pi , \xi )\) of the Fermat equation \(x^4+y^4=1\) in ring class fields \(\Omega _f\) over imaginary quadratic fields \(K=\mathbb {Q}(\sqrt{-d})\) of odd conductor f, where \(-d =d_K f^2 \equiv 1\) (mod 8). This is shown to result from the fact that the 2-adic function \(F(z)=(-1+ \sqrt{1-z^4})/z^2\) is a lift of the Frobenius automorphism on the coordinates \(\pi \) for which \(|\pi |_2<1\), for any \(d \equiv 7\) (mod 8), when considered as elements of the maximal unramified extension \(\textsf {K}_2\) of the 2-adic field \(\mathbb {Q}_2\). This gives an interpretation of the case \(p=2\) of a class number formula of Deuring. An algebraic method of computing these periodic points and the corresponding class equations \(H_{-d}(x)\) is given that is applicable for small periods. The pre-periodic points of \({\hat{F}}(z)\) in \(\overline{\mathbb {Q}}\) are also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brillhart, J., Morton, P.: Class numbers of quadratic fields, Hasse invariants of elliptic curves, and the supersingular polynomial. J. Number Theory 106, 79–111 (2004)

    Article  MathSciNet  Google Scholar 

  2. Chandrasekharan, K.: Elliptic Functions, Grundlehren der math. Wissenschaften 281. Springer, Berlin (1985)

    Google Scholar 

  3. Cox, David A.: Primes of the Form \(x^2+ny^2\); Fermat, Class Field Theory, and Complex Multiplication. Wiley, New York (1989)

    MATH  Google Scholar 

  4. Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Univ. Hamburg 14(1), 197–272 (1941)

    Article  Google Scholar 

  5. Deuring, M.: Die Anzahl der Typen von Maximalordnungen einer definiten Quaternionenalgebra mit primer Grundzahl. Jahresbericht der Deutschen Mathematiker-Vereinigung 54, 24–41 (1944)

    MathSciNet  MATH  Google Scholar 

  6. Deuring, M.: Teilbarkeitseigenschaften der singulären Moduln der elliptischen Funktionen und die Diskriminante der Klassengleichung. Comment. Math. Helv. 19, 74–82 (1946)

    Article  MathSciNet  Google Scholar 

  7. Gross, B.H., Zagier, D.B.: On singular moduli. J. Reine Angew. Math. 355, 191–220 (1985)

    MathSciNet  MATH  Google Scholar 

  8. Kani, E.: Idoneal numbers and some generalizations. Ann. Sci. Math. Québec 35(2), 197–227 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Lauter, K., Viray, B.: On singular moduli for arbitrary discriminants. Int. Math. Res. Notices IMRN 19, 9206–9250 (2015)

    Article  MathSciNet  Google Scholar 

  10. Lynch, R., Morton, P.: The quartic Fermat equation in Hilbert class fields of imaginary quadratic fields. Int. J. Number Theory 11, 1961–2017 (2015)

    Article  MathSciNet  Google Scholar 

  11. Morton, P.: Solutions of the cubic Fermat equation in ring class fields of imaginary quadratic fields (as periodic points of a \(3\)-adic algebraic function). Int. J. Number Theory 12, 853–902 (2016)

    Article  MathSciNet  Google Scholar 

  12. Morton, P.: Solutions of diophantine equations as periodic points of \(p\)-adic algebraic functions, I. New York J. Math 22, 715–740 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Schertz, R.: Complex Multiplication, New Mathematical Monographs, vol. 15. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  14. Schoeneberg, B.: Elliptic Modular Functions, An Introduction. Springer, Berlin (1974)

    Book  Google Scholar 

  15. Yui, N., Zagier, D.B.: On the singular values of Weber functions. Math. Comp. 66(220), 1645–1662 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Morton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morton, P. Periodic points of algebraic functions and Deuring’s class number formula. Ramanujan J 50, 323–354 (2019). https://doi.org/10.1007/s11139-018-0120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-018-0120-x

Keywords

Mathematics Subject Classification

Navigation