Abstract
The little and big q-Jacobi polynomials are shown to arise as basis vectors for representations of the Askey–Wilson algebra. The operators that these polynomials respectively diagonalize are identified within the Askey–Wilson algebra generated by twisted primitive elements of \(\mathfrak U_q(sl(2))\). The little q-Jacobi operator and a tridiagonalization of it are shown to realize the equitable embedding of the Askey–Wilson algebra into \(\mathfrak U_q(sl(2))\).
This is a preview of subscription content, access via your institution.
References
Baseilhac, P., Genest, V.X., Vinet, L., Zhedanov, A.: An embedding of the Bannai–Ito algebra in \(\cal{U}(osp\mathit{(1, 2)}) \) and \(-1\) polynomials. Lett. Math. Phys. 108, 1623–1634 (2018)
Floreanini, R., Vinet, L.: Quantum algebras and q-special functions. Ann. Phys. 221, 53–70 (1993)
Floreanini, R., Vinet, L.: On the quantum group and quantum algebra approach to q-special functions. Lett. Math. Phys. 27, 179–190 (1993)
Genest, V.X., Ismail, M.E.H., Vinet, L., Zhedanov, A.: Tridiagonalization of the hypergeometric operator and the Racah–Wilson algebra. Proc. Am. Math. Soc. 144, 5217–5226 (2016)
Granovskii, Ya.I., Zhedanov, A.S.: Linear covariance algebra for \(SL_q(2)\). J. Phys. A 26, L357 (1993)
Grünbaum, F.A., Vinet, L., Zhedanov, A.: Algebraic Heun operator and band-time limiting. arXiv:1711.07862
Ismail, M.E.H., Koelink, E.: The J-matrix method. Adv. Appl. Math. 56, 379–395 (2011)
Ismail, M.E.H., Koelink, E.: Spectral analysis of certain Schrödinger operators. SIGMA 8, 61–79 (2012)
Ito, T., Terwilliger, P., Weng, C.-W.: The quantum algebra \(\mathfrak{U}_q(sl(2))\) and its equitable presentation. J. Algebra 298, 284–301 (2006). arXiv:math/0507477
Koekoek, R., Swarttouw, R.: The Askey-scheme of hypergeometric orthogonal polynomials and its \(q\)-analogue. arXiv:math.CA/9602214v1
Koelink, H.T., Van der Jeugt, J.: Convolutions for orthogonal polynomials from Lie and quantum algebra representations. SIAM J. Math. Anal. 29, 794–822 (1998). arXiv:q-alg/9607010
Koornwinder, T.H.: Representations of the twisted \(SU(2)\) quantum group and some q-hypergeometric orthogonal polynomials. Indag. Math. 51, 97–117 (1989)
Koornwinder, T.H.: Askey–Wilson polynomials as zonal spherical functions on the SU(2) quantum group. SIAM J. Math. Anal. 24, 795–813 (1993)
Koornwinder, T.H.: q-Special functions, a tutorial, representations of Lie groups and quantum groups. In: Baldoni, V.., Picardello, M.A. (eds.) Longman Scientific and Technical, pp. 46–128 (1994). arXiv:math/9403216
Masuda, T., Mimachi, Y., Nakagami, Y., Noumi, M., Ueno, K.: Representations of quantum groups and a q-analogue of orthogonal polynomials. C. R. Acad. Sci. Paris I 307, 559–564 (1988)
Masuda, T., Mimachi, K., Nakagami, Y., Noumi, M., Ueno, K.: Representations of the quantum group \(SU_q(2)\) and the little q-Jacobi polynomials. J. Funct. Anal. 99, 357–386 (1991)
Noumi, M., Mimachi, K.: Quantum \(2\)-spheres and big \(q\)-Jacobi polynomials. Commun. Math. Phys. 128, 521–531 (1990)
Sklyanin, E.K.: Some algebraic structures connected with the Yang–Baxter equation. Representations of quantum algebras. Funct. Anal. Appl. 17, 273–284 (1983)
Terwilliger, P.: The universal Askey–Wilson alebra and the equitable presentation of \(\mathfrak{U}_q(sl(2))\). SIGMA 7, 099 (2011). arXiv:1107.3544
Terwilliger, P.: The Lusztig automorphism of \(\mathfrak{U}_q(sl(2))\) from the equitable point of view. J. Algebra Appl. 16, 1750235 (2017). arXiv:1509.08956
Tsujimoto, S., Vinet, L., Zhedanov, A.: Tridiagonal representations of the q-oscillator algebra and Askey/Wilson polynomials. J. Phys. A 50, 235202 (2017)
Vaksman, L.L., Soibelman, Ya.S.: Function algebra on the quantum group \(SU(2)\). Funk. Anal. Priloz. 22, 1–14 (1988)
Zhedanov, A.S.: Hidden symmetry of Askey–Wilson polynomials. Teoret. Mat. Fiz. 89, 190–204 (1991)
Acknowledgements
We thank Paul Terwilliger for comments. L.V. would like to express his gratitude for the hospitality extended to him by the Institut Denis-Poisson of the Université François-Rabelais de Tours as Chercheur Invité where most of this research was carried out.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The research of L.V. is funded in part by a discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada. P.B. is supported by C.N.R.S. Work of A.Z. is supported by the National Science Foundation of China (Grant No. 11771015).
Rights and permissions
About this article
Cite this article
Baseilhac, P., Martin, X., Vinet, L. et al. Little and big q-Jacobi polynomials and the Askey–Wilson algebra. Ramanujan J 51, 629–648 (2020). https://doi.org/10.1007/s11139-018-0080-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11139-018-0080-1
Keywords
- Askey–Wilson algebra
- Tridiagonalization
- Orthogonal polynomials
Mathematics Subject Classification
- 81R50
- 81R10
- 81U15
- 39A70
- 33D50
- 39A13