Skip to main content
Log in

On mock theta functions and weight-attached Frobenius partitions

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In this paper, we provide the combinatorial interpretations of many mock theta functions and some generalizations using Frobenius partitions with attached weights. We establish our results by providing the interpretations of unsigned versions of mock theta functions leading to the interpretations of the corresponding mock theta functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, A.K.: Identities and generating functions for certain classes of F-partitions. Ars combinatoria 57, 65–75 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Agarwal, A.K.: \(n\)-Color partition theoretic interpretations of some mock theta functions. Electron. J. Combin. 11(3), #N14 (2004)

  3. Agarwal, A.K., Andrews, G.E.: Rogers–Ramanujan identities for partitions with N copies of N. J. Combin. Theory Ser. A 45(1), 40–49 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Agarwal, A.K., Narang, G.: Generalized Frobenius partitions and mock theta functions. Ars combinatoria 99, 439–444 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Agarwal, A.K., Padmavathamma: Rogers–Ramanujan Type Identities for Burges Restricted Partition Pairs via Restricted Frobenius Partitions, pp. 53–60. Birkhäuser Basel, Basel (2002)

    Google Scholar 

  6. Andrews, G.E.: Generalized Frobenius Partitions, vol. 301. American Mathematical Society, Providence (1984)

    MATH  Google Scholar 

  7. Eichhorn, D., Sellers, J.A.: Computational proofs of congruences for 2-colored Frobenius partitions. Int. J. Math. Math. Sci. 29(6), 333–340 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kolitsch, L.W.: An extension of a congruence by Andrews for generalized Frobenius partitions. J. Combin. Theory Ser. A 45(1), 31–39 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lovejoy, J.: Ramanujan-type congruences for three colored Frobenius partitions. J. Number Theory 85(2), 283–290 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ono, K.: Congruences for Frobenius partitions. J. Number Theory 57(1), 170–180 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rana, M., Agarwal, A.K.: Frobenius partition theoretic interpretation of a fifth order mock theta function. Can. J. Pure Appl. Sci. 3(2), 859–863 (2009)

    Google Scholar 

  12. Rana, M., Sareen, J.K.: Split (n+ t)-color partitions and 2-color F-partitions. Contrib. Discrete Math. 12(2), 12–15 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Sareen, J.K., Rana, M.: Combinatorics of tenth-order mock theta functions. Proc. Indian Acad. Sci. Math. Sci. 126(4), 549–556 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sharma, S., Rana, M.: Combinatorial interpretations of mock theta functions by attaching weights. Discrete Math. 341(7), 1903–1914 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sood, G., Agarwal, A.K.: Frobenius partition theoretic interpretations of some basic series identities. Contrib. Discrete Math. 7(2), 54–65 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Sood, G., Agarwal, A.K.: On a 3-way combinatorial identity. Open J. Discrete Math. 4(04), 89 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the referee for his/her many valuable suggestions which led to a better presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rana.

Additional information

M. Rana—Supported by NBHM Research Grant Ref. No. 2/48(18/2016/NBHM(R.P.)/R D II/14983).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Rana, M. On mock theta functions and weight-attached Frobenius partitions. Ramanujan J 50, 289–303 (2019). https://doi.org/10.1007/s11139-018-0054-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-018-0054-3

Keywords

Mathematics Subject Classification

Navigation