Skip to main content
Log in

Phantom holomorphic projections arising from Sturm’s formula

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We construct Siegel Poincaré series of weight three and genus two outside their natural domain of convergency by the method of analytic continuation. In contrast to genus two Poincaré series of higher weights greater three, the Poincaré series thus obtained do not define holomorphic cuspforms of weight three. In fact, additional nonholomorphic phantom parts show up and we are able to describe them explicitly in terms of holomorphic forms of weight one. As a consequence of this result on Poincaré series, in the case under consideration we can also show that Sturm’s operator not only projects to the holomorphic discrete series of weight three, as one would expect, but also gives rise to an additional phantom projection. For genus two the weight three case is distinguished, giving the first example for this new kind of phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The integral is \(\int _{\mathcal Y}b(T,Y)\exp (-4\pi {{\mathrm{tr}}}(TY))\det (TY)^{k-1/2+s}\frac{dY}{\det (Y)^{3/2}}\), which equals \((4\pi )^2a(T)\det (T)\int _{\mathcal Y}\Big (k(k-1/2)(4\pi )^{-2}\det (TY)^{-1}-(k-1/2)(4\pi )^{-1}\det (TY)^{-1}{{\mathrm{tr}}}(TY)+1\Big )\times \exp (-4\pi {{\mathrm{tr}}}(TY))\det (TY)^{k-1/2+s}\frac{dY}{\det (Y)^{3/2}}\). For the change of variables \(Y\mapsto 4\pi T^{\frac{1}{2}}Y T^{\frac{1}{2}}\) this equals \((4\pi )^{-2(k+1/2+s-1)}a(T)\det (T)\sqrt{\pi }s(s-1/2)\Gamma (s+k-1/2)\Gamma (s+k-1)\).

References

  1. Birman, M.S., Solomjak, M.Z.: Spectral Theory of Self-Adjoint Operators in Hilbert Space. D. Reidel, Dortrecht (1987)

    Google Scholar 

  2. Courtieu, M., Panchishkin, A.: Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms. Lecture Notes in Mathematics, vol. 1471, 2nd augmented ed. Springer, Heidelberg (2004)

  3. Freitag, E.: Siegelsche Modulformen, Grundlehren der mathematischen Wissenschaften, vol. 254. Springer, Berlin (1983)

    Google Scholar 

  4. Freitag, E.: Hilbert–Siegelsche singuläre Modulformen. Math. Nachr. 170, 101–126 (1994)

    Article  MathSciNet  Google Scholar 

  5. Gross, B.H., Zagier, D.B.: Heegner points and derivatives of L-series. Invent. Math. 84(2), 225–320 (1986)

    Article  MathSciNet  Google Scholar 

  6. Knapp, A.: Representation Theory of Semisimple Groups. Princeton University Press, Princeton (1986)

    Book  Google Scholar 

  7. Konno, T.: Spectral Decomposition of the Automorphic Spectrum of \(\mathop {GSp}(4)\). Lecture Notes (2007)

  8. Langlands, R.P.: On the Functional Equation Satisfied by Eisenstein Series. Lecture Notes in Mathematics, vol. 544. Springer, Berlin (1976)

    Chapter  Google Scholar 

  9. Maass, H.: Siegel’s Modular Forms and Dirichlet Series. Lecture Notes in Mathematics, vol. 216. Springer, Heidelberg (1971)

    Chapter  Google Scholar 

  10. Maurischat, K.: On holomorphic projection for symplectic groups. J. Number Theory 182, 131–178 (2018)

    Article  MathSciNet  Google Scholar 

  11. Nzoukoudi, B.: Reprèsentations irrèducibles unitaires de \(\text{ Sp }(2,{{\mathbb{R}}})\). Comptes Rendus Acad. Sci. Paris 297, 451–454 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Resnikoff, H.L.: Automorphic forms of singular weight and singular forms. Math. Ann. 215, 173–193 (1975)

    Article  MathSciNet  Google Scholar 

  13. Shimura, G.: On Eisenstein series. Duke Math. J. 50(2), 417–476 (1983)

    Article  MathSciNet  Google Scholar 

  14. Sturm, J.: Projections of \(C^\infty \) automorphic forms. Bull. Am. Math. Soc. 2, 435–439 (1980)

    Article  MathSciNet  Google Scholar 

  15. Sturm, J.: The critical values of Zeta-functions associated to the symplectic group. Duke Math. J. 48, 327–350 (1981)

    Article  MathSciNet  Google Scholar 

  16. Weissauer, R.: Stabile Modulformen und Eisensteinreihen. Lecture Notes in Mathematics, vol. 1219. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  17. Zhu, C.: Representations of scalar \(K\)-type and applications. Isr. J. Math. 135, 111–124 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Maurischat.

Additional information

This work was partially supported by the European Social Fund (Kathrin Maurischat).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurischat, K., Weissauer, R. Phantom holomorphic projections arising from Sturm’s formula. Ramanujan J 47, 21–46 (2018). https://doi.org/10.1007/s11139-018-0033-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-018-0033-8

Keywords

Mathematics Subject Classification

Navigation