Abstract
We consider an infinite series, due to Ramanujan, which converges to a simple expression involving the natural logarithm. We show that Ramanujan’s series represents a completely monotone function, and explore some of its consequences, including a non-trivial family of inequalities satisfied by the natural logarithm, some formulas for the Euler–Mascheroni constant, and a recurrence satisfied by the Bernoulli numbers. We also provide a one-parameter generalization of Ramanujan’s series, which includes as a special case another related infinite series evaluation due to Ramanujan.
Similar content being viewed by others
References
Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1976)
Ball, K.: Completely monotonic rational functions and Hall’s marriage theorem. J. Combin. Theory Ser. B 61(1), 118–124 (1994). https://doi.org/10.1006/jctb.1994.1037
Berndt, B.C.: Ramanujan’s Notebooks, Part IV. Springer, New York (1994)
Borwein, J.M., Borwein, P.B.: The arithmetic–geometric mean and fast computation of elementary functions. SIAM Rev. 126(3), 351–366 (1984)
Borwein, J.M., Bradley, D.M., Crandall, R.E.: Computational strategies for the Riemann zeta function. J. Comput. Appl. Math. 121(1–2), 247–296 (2000). https://doi.org/10.1016/S0377-0427(00)00336-8
Bromwich, T .J .I’.A.: An Introduction to the Theory of Infinite Series, 3rd edn. Chelsea, New York (1991)
Day, W.A.: On monotonicity of the relaxation functions of vixcoelastic material. Proc. Camb. Philos. Soc. 67(2), 503–508 (1970). https://doi.org/10.1017/S0305004100045771P
Frenzen, C.L.: Error bounds for asymptotic expansions of the ratio of two gamma functions. SIAM J. Math. Anal. 18(3), 890–896 (1987). https://doi.org/10.1137/0518067
Gould, H.W.: Explicit formulas for Bernoulli numbers. Am. Math. Mon. 79(1), 44–51 (1972). https://doi.org/10.2307/2978125
Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, London (2007)
Hardy, G.H., Seshu Aiyar, P.V., Wilson, B.M. (eds.): Collected Papers of Srinivasa Ramanujan. AMS Chelsea Publishing, Providence (2000)
Kimberling, C.H.: A probabilistic interpretation of complete monotonicity. Aequ. Math. 10(2), 152–164 (1974). https://doi.org/10.1007/BF01832852
Lagarias, J.C.: Euler’s constant: Euler’s work and modern developments. Bull. Am. Math. Soc. 50, 527–628 (2013). https://doi.org/10.1090/S0273-0979-2013-01423-X
Lorch, L., Muldoon, M.E., Szego, P.: Higher monotonicity properties of certain Sturm–Liouville functions. III. Can. J. Math. 22, 1238–1265 (1970)
Mahajan, A., Ross, D.K.: A note on completely and absolutely monotone functions. Can. Math. Bull. 25(2), 143–148 (1982)
Olver, F.W.J., et al. (eds.): NIST Digital Library of Mathematical Functions. Release 1.013 of 16 Sept 2016. http://dlmf.nist.gov/24.2
Ramanujan, S.: Notebooks (2 Volumes). Tata Institute of Fundamental Research, Bombay (1957)
Schilling, R.L., Song, R., Vondraček, Z.: Bernstein functions: theory and applications. De Gruyter Studies in Mathematics, vol. 37, 2nd edn. Walter de Gruyter, Berlin (2012)
Sondow, J.: New Vacca-type rational series for Euler’s constant \(\gamma \) and its “alternating” analog \(\log 4/\pi \). In: Chudnovsky, D., Chudnovsky, G. (eds.) Additive Number Theory: Festschrift in Honor of the Sixtieth Birthday of Melvyn B. Nathanson, pp. 331–340. Springer, New York (2010). https://doi.org/10.1007/978-0-387-68361-4-23
Sondow, J., Zudilin, W.: Euler’s constant, \(q\)-logarithms, and formulas of Ramanujan and Gosper. Ramanujan J. 12(2), 225–244 (2006). https://doi.org/10.1007/s11139-006-0075-1
Vacca, G.: A new series for the Eulerian constant \(\gamma =.577\dots \). Quart. J. Math. XL, 363–364 (1910)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bradley, D.M. Concerning an infinite series of Ramanujan related to the natural logarithm. Ramanujan J 47, 253–265 (2018). https://doi.org/10.1007/s11139-017-9961-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11139-017-9961-y