Skip to main content
Log in

Almost periodic functions in terms of Bohr’s equivalence relation

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

A Correction to this article was published on 01 March 2019

This article has been updated

Abstract

In this paper we introduce an equivalence relation on the classes of almost periodic functions of a real or complex variable which is used to refine Bochner’s result that characterizes these spaces of functions. In fact, with respect to the topology of uniform convergence, we prove that the limit points of the family of translates of an almost periodic function are precisely the functions which are equivalent to it, which leads us to a characterization of almost periodicity. In particular we show that any exponential sum which is equivalent to the Riemann zeta function, \(\zeta (s)\), can be uniformly approximated in \(\{s=\sigma +it:\sigma >1\}\) by certain vertical translates of \(\zeta (s)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 01 March 2019

    The authors wish to draw the attention to a mistake which appears in the proof of Proposition 3 of the above quoted paper [4].

  • 01 March 2019

    The authors wish to draw the attention to a mistake which appears in the proof of Proposition 3 of the above quoted paper [4].

References

  1. Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory. Springer, New York (1990)

    Book  MATH  Google Scholar 

  2. Besicovitch, A.S.: Almost Periodic Functions. Dover, New York (1954)

    MATH  Google Scholar 

  3. Bochner, S.: A new approach to almost periodicity. Proc. Natl. Acad. Sci. 48, 2039–2043 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bohr, H.: Zur Theorie der fastperiodischen Funktionen. (German) III. Dirichletentwicklung analytischer Funktionen. Acta Math. 47(3), 237–281 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bohr, H.: Almost Periodic Functions. Chelsea, New York (1951)

    MATH  Google Scholar 

  6. Bohr, H.: Contribution to the theory of almost periodic functions, Det Kgl. danske Videnskabernes Selskab. Matematisk-fisiske meddelelser. Bd. XX. Nr. 18, Copenhague (1943)

  7. Corduneanu, C.: Almost Periodic Functions. Interscience Publishers, New York (1968)

    MATH  Google Scholar 

  8. Corduneanu, C.: Almost Periodic Oscillations and Waves. Springer, New York (2009)

    Book  MATH  Google Scholar 

  9. Favorov, S.Y.U.: Zeros of holomorphic almost periodic functions. J. Anal. Math. 84, 51–66 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fink, A.M.: Almost Periodic Differential Equations. Lecture Notes in Mathematics, vol. 377. Springer, New York (1974)

    MATH  Google Scholar 

  11. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford University Press, Oxford (1979)

    MATH  Google Scholar 

  12. Jessen, B.: Some aspects of the theory of almost periodic functions. In: Proceedings of International Congress Mathematicians Amsterdam, 1954, Vol. 1. North-Holland, pp. 304–351 (1954)

  13. Karatsuba, A.A., Voronin, S.M.: The Riemann Zeta Function. Walter de Gruyter & Co., Berlin (1992)

    Book  MATH  Google Scholar 

  14. Laurinčikas, A.: Universality of the Riemann zeta-function. J. Number Theory 130, 2323–2331 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Laurinčikas, A., Schwarz, W., Steuding, J.: The universality of general Dirichlet series. Analysis (Munich) 23(1), 13–26 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Lehman, R.S.: On Liouville’s function. Math. Comput. 14, 311–320 (1960)

    MathSciNet  MATH  Google Scholar 

  17. Sepulcre, J.M., Vidal, T.: Equivalence classes of exponential polynomials with the same set of zeros. Complex Var. Elliptic Equ. 61(2), 225–238 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. Oxford Science Publication, London (1986)

    MATH  Google Scholar 

  19. Titchmarsh, E.C.: The Theory of Functions, 2nd edn. Oxford University Press, London (1976)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referee for his/her valuable comments on our manuscript which led us to generalize our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Sepulcre.

Additional information

The first author’s research was partially supported by Generalitat Valenciana under Project GV/2015/035.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepulcre, J.M., Vidal, T. Almost periodic functions in terms of Bohr’s equivalence relation. Ramanujan J 46, 245–267 (2018). https://doi.org/10.1007/s11139-017-9950-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-017-9950-1

Keywords

Mathematics Subject Classification

Navigation