The Ramanujan Journal

, Volume 45, Issue 1, pp 265–289 | Cite as

Bases of Feigin–Stoyanovsky’s type subspaces for \(C_\ell ^{(1)}\)

  • Ivana Baranović
  • Mirko Primc
  • Goran TrupčevićEmail author


In this paper, we construct combinatorial bases of Feigin–Stoyanovsky’s type subspaces of standard modules for level k affine Lie algebra \(C_\ell ^{(1)}\). We prove spanning by using annihilating field \(x_\theta (z)^{k+1}\) of standard modules. In the proof of linear independence, we use simple currents and intertwining operators whose existence is given by fusion rules.


Affine Lie algebras Combinatorial bases Principal subspace Intertwining operators Simple current 

Mathematics Subject Classification

17B67 17B69 05A19 



We are grateful to Dražen Adamović and Alex Feingold for useful information and stimulating discussions on fusion rules and intertwining operators.


  1. 1.
    Ardonne, E., Kedem, R., Stone, M.: Fermionic characters and arbitrary highest-weight integrable \(\widehat{\mathfrak{sl}}_{r+1}\) -modules. Commun. Math. Phys. 264, 427–464 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baranović, I.: Combinatorial bases of Feigin–Stoyanovsky’s type subspaces of level \(2\) standard modules for \(D_4^{(1)}\). Commun. Algebr. 39, 1007–1051 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bourbaki, N.: Groupes et Algebres de Lie. Hermann, Paris (1975)zbMATHGoogle Scholar
  4. 4.
    Butorac, M.: Combinatorial bases of principal subspaces for the affine Lie algebra of type \(B_2^{(1)}\). J. Pure Appl. Algebr. 218, 424–447 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Calinescu, C.: Principal subspaces of higher-level standard \(\widehat{\mathfrak{sl}(3)}\) -modules. J. Pure Appl. Algebr. 210, 559–575 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of certain \(A_1^{(1)}\) -modules, II: higher-level case. J. Pure Appl. Algebr. 212, 1928–1950 (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A, D, E. J. Algebr. 323, 167–192 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Capparelli, S., Lepowsky, J., Milas, A.: The Rogers–Ramanujan recursion and intertwining operators. Commun. Contemp. Math. 5, 947–966 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Capparelli, S., Lepowsky, J., Milas, A.: The Rogers–Selberg recursions, the Gordon–Andrews identities and intertwining operators. Ramanujan J. 12, 379–397 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators. Progress in Mathematics, vol. 112. Birkhaüser, Boston (1993)CrossRefzbMATHGoogle Scholar
  11. 11.
    Dong, C., Li, H., Mason, G.: Simple currents and extensions of vertex operator algebras. Commun. Math. Phys. 180, 671–707 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Feigin, B., Jimbo, M., Loktev, S., Miwa, T., Mukhin, E.: Bosonic formulas for \((k,\ell )\)-admissible partitions. Ramanujan J. 7, 485–517 (2003); Addendum to ‘Bosonic formulas for \((k,\ell )\)-admissible partitions’. Ramanujan J. 7, 519–530 (2003)Google Scholar
  13. 13.
    Feigin, B., Jimbo, M., Miwa, T., Mukhin, E., Takeyama, Y.: Fermionic formulas for \((k,3)\)-admissible configurations. Publ. RIMS 40, 125–162 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Feingold, A.J., Fredenhagen, S.: A new perspective on the Frenkel–Zhu fusion rule theorem. J. Algebr. 320, 2079–2100 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Frenkel, I., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules, preprint (1989). Mem. Am. Math. Soc. 104 (1993)Google Scholar
  16. 16.
    Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Pure and Applied Mathematics, vol. 134. Academic Press, Boston (1988)zbMATHGoogle Scholar
  17. 17.
    Georgiev, G.: Combinatorial constructions of modules for infinite-dimensional Lie algebras, I. Principal subspace. J. Pure Appl. Algebr. 112, 247–286 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gannon, T.: The automorhisms of affine fusion rings. Adv. Math. 165, 165–193 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Humphreys, J.: Introduction to Lie Algebras and Representation Theory. Springer, New York (1994)zbMATHGoogle Scholar
  20. 20.
    Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  21. 21.
    Lepowsky, J., Li, H.-S.: Introduction to Vertex Operator Algebras and Their Representations. Progress in Mathematics, vol. 227. Birkhäuser, Boston (2004)CrossRefzbMATHGoogle Scholar
  22. 22.
    Lepowsky, J., Primc, M.: Structure of the standard modules for the affine Lie algebra \(A_{1}^{(1)}\). Contemp. Math. 46, 1–84 (1985)CrossRefzbMATHGoogle Scholar
  23. 23.
    Meurman, A., Primc, M., Meurman, A., Primc, M.: Annihilating fields of standard modules of \(\mathfrak{sl}(2,\mathbb{C})^{\widetilde{} }\) and combinatorial identities. Mem. Am. Math. Soc. 652, 1–89 (1999)zbMATHGoogle Scholar
  24. 24.
    Primc, M.: Vertex operator construction of standard modules for \(A_n^{(1)}\). Pac. J. Math. 162, 143–187 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Primc, M.: Basic representations sor classical affine Lie algebras. J. Algebr. 228, 1–50 (2000)CrossRefzbMATHGoogle Scholar
  26. 26.
    Primc, M.: \((k, r)\)-admissible configurations and intertwining operators. Contemp. Math. 442, 425–434 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Primc, M.: Combinatorial bases of modules for affine Lie algebra \(B_2^{(1)}\). Cent. Eur. J. Math. 11, 197–225 (2013)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Primc, M., Šikić, T.: Leading terms of relations for standard modules of affine Lie algebras \(C_{n}^{(1)}\). arXiv:1506.05026 [math.QA]
  29. 29.
    Sadowski, C.: Presentations of the principal subspaces of the higher level \(\widehat{{{\mathfrak{s}l}} (3)}\) -modules. J. Pure Appl. Algebr. 219, 2300–2345 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Stoyanovsky, A.V.: Deformations, Lie algebra, formulas, character (in Russian). Funktsional. Anal. i Prilozhen. 32, 84–86; translation in Funct. Anal. Appl. 32, 66–68 (1998)Google Scholar
  31. 31.
    Stoyanovsky, A.V., Feigin, B.L.: Functional models of the representations of current algebras, and semi-infinite Schubert cells (in Russian). Funktsional. Anal. i Prilozhen. 28, 68–90 (1994); translation in Funct. Anal. Appl. 28, 55–72 (1994); preprint Feigin, B. Stoyanovsky, A.: Quasi-particles models for the representations of Lie algebras and geometry of flag manifold, hep-th/9308079, RIMS 942Google Scholar
  32. 32.
    Trupčević, G.: Combinatorial bases of Feigin–Stoyanovsky’s type subspaces of higher-level standard \(\tilde{\mathfrak{s}l}(\ell +1,)\)-modules. J. Algebr. 322, 3744–3774 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Trupčević, G.: Combinatorial bases of Feigin–Stoyanovsky’s type subspaces of level standard \(\tilde{\mathfrak{s}l}(\ell +1,)\)-modules. Commun. Algebr. 38, 3913–3940 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ivana Baranović
    • 1
  • Mirko Primc
    • 2
  • Goran Trupčević
    • 3
    Email author
  1. 1.Faculty of Chemical Engineering and TechnologyUniversity of ZagrebZagrebCroatia
  2. 2.Department of Mathematics, Faculty of ScienceUniversity of ZagrebZagrebCroatia
  3. 3.Faculty of Teacher EducationUniversity of ZagrebZagrebCroatia

Personalised recommendations