Advertisement

The Ramanujan Journal

, Volume 45, Issue 1, pp 227–251 | Cite as

Explicit estimates of some functions over primes

  • Pierre Dusart
Article

Abstract

New results have been found about the Riemann hypothesis. In particular, we noticed an extension of zero-free region and a more accurate location of zeros in the critical strip. The Riemann hypothesis implies results about the distribution of prime numbers. We get better effective estimates of common number theoretical functions which are closely linked to \(\zeta \) zeros like \(\psi (x),\vartheta (x),\pi (x)\), or the \(k\mathrm{{th}}\) prime number \(p_k\).

Keywords

Number theory Arithmetic functions Chebyshev’s functions Estimates of prime numbers 

Mathematics Subject Classification

Primary 11N56 Secondary 11A25 11N05 

Notes

Acknowledgments

The author wishes to thank the anonymous reviewers for their helpful comments.

References

  1. 1.
    Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1976)zbMATHGoogle Scholar
  2. 2.
    Axler, C.: New bounds for the prime counting function \(\pi (x)\). arXiv: 1409.1780 (2014)
  3. 3.
    Berkane, D., Dusart, P.: On a constant related to the prime counting function. Mediterr. J. Math. 13(3), 929–938 (2016). doi: 10.1007/s00009-015-0564-9
  4. 4.
    Cesaro, E.: Sur une formule empirique de M. Pervouchine. Comptes Rendus hebdo. des Séances de l’Académie des Sciences CXIX 119, 848–849 (1894)Google Scholar
  5. 5.
    Cipolla, M.: La determinazione assintotica dell’\(n^{imo}\) numero primo. Rend. Acad. Sci. Fis. Mat. Napoli 8, 132–166 (1902)zbMATHGoogle Scholar
  6. 6.
    Costa P.N.: Estimates for the Chebyshev function \(\psi (x)-\vartheta (x)\). Math. Comput. 44(169), 211–221 (1985). See corrigendum [Math. Comput. 48(177), 447 (1987)]Google Scholar
  7. 7.
    Deléglise, M., Rivat, J.: Computing \(\psi (x)\). Math. Comput. 67(224), 1691–1696 (1998)CrossRefzbMATHGoogle Scholar
  8. 8.
    Dusart, P.: Inégalités explicites pour \(\psi (X)\), \(\vartheta (X)\), \(\pi (X)\) et les nombres premiers. C. R. Math. Acad. Sci. Soc. R. Can. 21(2), 53–59 (1999)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dusart, P.: The kth prime is greater than k(ln k + ln ln k - 1) for k \(\ge \) 2. Math. Comput. 68(225), 411–415 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dusart, P.: Estimates of \(\psi,\vartheta \) for large values of \(x\) without the Riemann hypothesis. Math. Comput. 85(298), 875–888 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Edwards, H.M.: Riemann’s Zeta Function. Academic Press, New York–London, 1974. Pure and Applied Mathematics, Vol. 58. Reprinted by Dover Publications Inc., Mineola (2001)Google Scholar
  12. 12.
    Faber, L., Kadiri, H.: New bounds for \(\psi (x)\). Math. Comput. 84(293), 1339–1357 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gourdon, X.: The \(10^{13}\) first zeros of the Riemann zeta function, and zeros computation at very large height. http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf (2004). Accessed 24 Oct 2004
  14. 14.
    Gram, J.P.: Note sur les zéros de la fonction \(\zeta (s)\) de Riemann. Acta Math. 27(1), 289–304 (1903)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ingham, A.: The Distribution of Prime Numbers. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1932)zbMATHGoogle Scholar
  16. 16.
    Kadiri, H.: Une région explicite sans zéros pour la fonction \(\zeta \) de Riemann. Acta Arith. 117(4), 303–339 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kadiri, H.: A zero density result for the Riemann zeta function. Acta Arith. 160(2), 185–200 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kadiri, H., Lumley, A.: Short effective intervals containing primes. Integers 14, Paper No. A61 (2014)Google Scholar
  19. 19.
    Massias, J.-P., Robin, G.: Bornes effectives pour certaines fonctions concernant les nombres premiers. J. Théor. Nombres Bordeaux 8(1), 215–242 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mossinghoff, M.J., Trudgian, T.S.: Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function. J. Number Theory 157, 329–349 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Nicely, T.R.: New maximal prime gaps and first occurrences. Math. Comput. 68(227), 1311–1315 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nyman, B., Nicely, T.R.: New prime gaps between \(10^{15}\) and \(5\times 10^{16}\). J. Integer Seq. 6, 3 (2003). Article 03.3.1, 6Google Scholar
  23. 23.
    Odlyzko, A.M.: The 10\(^{22}\)-nd zero of the Riemann zeta function. In: van Frankenhuysen, M., Lapidus, M.L. (eds.) Dynamical, Spectral, and Arithmetic Zeta Functions. American Mathematical Society, Contemporary Mathematics, vol. 290, pp. 139–144 (2001)Google Scholar
  24. 24.
    Oliveira e Silva, T., Herzog, S., Pardi, S.: Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4\(\cdot \)10\({}^{\text{18}}\). Math. Comput. 83, 288 (2014)Google Scholar
  25. 25.
    Panaitopol, L.: A formula for \(\pi (x)\) applied to a result of Koninck-Ivić. Nieuw Arch. Wiskd. (5) 1, 55–56 (2000)Google Scholar
  26. 26.
    Platt, D.J., Trudgian, T.S.: On the first sign change of \(\vartheta (x)-x\). Math. Comput. 85, 1539–1547 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ramaré, O.: Explicit estimates for the summatory function of \(\Lambda (n)/n\) from the one of \(\Lambda (n)\). Acta Arith. 159(2), 113–122 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ramaré, O.: An explicit density estimate for Dirichlet \(L\)-series. Math. Comput. 85(297), 325–356 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ramaré, O., Saouter, Y.: Short effective intervals containing primes. J. Number Theory 98(1), 10–33 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Riesel, H.: Prime Numbers and Computer Methods for Factorization. Birkhauser Boston, Cambridge, MA (1985)CrossRefzbMATHGoogle Scholar
  31. 31.
    Robin, G.: Estimation de la fonction de Tchebychef \(\vartheta \) sur le \(k\)-ième nombre premier et grandes valeurs de la fonction \(\omega (n)\) nombre de diviseurs premiers de \(n\). Acta Arith. 42(4), 367–389 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Robin, G.: Permanence de relations de récurrence dans certains développements asymptotiques. Publ. l’Inst. Math. 43(57), 17–25 (1988)Google Scholar
  33. 33.
    Rosser, J.B.: The \(n\)-th prime is greater than \(n\, {\rm {ln}}\, n\). Proc. Lond. Math. Soc. 45, 21–44 (1939)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Rosser, B.: Explicit bounds for some functions of prime numbers. Am. J. Math. 63, 211–232 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6, 64–94 (1962)Google Scholar
  36. 36.
    Rosser, J.B., Schoenfeld, L.: Sharper bounds for the Chebyshev functions \({\vartheta }(x)\) and \({\psi }(x)\). Math. Comput. 29(129), 243–269 (1975)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Salvy, B.: Fast computation of some asymptotic functional inverses. J. Symb. Comput. 17(3), 227–236 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Schoenfeld, L.: Sharper bounds for the Chebyshev functions \(\vartheta (x)\) and \(\psi (x)\). II. Math. Comput. 30(134), 337–360 (1976)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Trudgian, T.: An improved upper bound for the error in the zero-counting formulae for Dirichlet \(L\)-functions and Dedekind zeta-functions. Math. Comput. 84(293), 1439–1450 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Trudgian, T.: Updating the error term in the prime number theorem. Ramanujan J. 39(2), 225–234 (2016). doi: 10.1007/s11139-014-9656-6
  41. 41.
    van de Lune, J., te Riele, H.J.J., Winter, D.T.: On the zeros of the Riemann zeta function in the critical strip. IV. Math. Comput. 46(174), 667–681 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Wedeniwski, S.: Zetagrid. In: Schoder, D., Fischbach, K., Teichmann, R. (eds.) Peer-to-Peer: Ökonomische, Technische und Juristische Perspektiven, pp. 173–188. Springer, Berlin, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.XLIM - UMR CNRS 7252, Faculté des Sciences et TechniquesUniversité de LimogesLimogesFrance
  2. 2.Département de MathématiquesLimogesFrance

Personalised recommendations