Skip to main content
Log in

The local–global principle for symmetric determinantal representations of smooth plane curves

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

A smooth plane curve is said to admit a symmetric determinantal representation if it can be defined by the determinant of a symmetric matrix with entries in linear forms in three variables. We study the local–global principle for the existence of symmetric determinantal representations of smooth plane curves over a global field of characteristic different from two. When the degree of the plane curve is less than or equal to three, we relate the problem of finding symmetric determinantal representations to more familiar Diophantine problems on the Severi–Brauer varieties and mod 2 Galois representations, and prove that the local–global principle holds for conics and cubics. We also construct counterexamples to the local–global principle for quartics using the results of Mumford, Harris, and Shioda on theta characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beauville, A.: Variétés de Prym et jacobiennes intermédiaires. Ann. Sci. École Norm. Sup. (4) 10(3), 309–391 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beauville, A.: Determinantal hypersurfaces. Michigan Math. J. 48, 39–64 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3, p. 21. Springer, Berlin (1990)

  4. Bruin, N.: Success and challenges in determining the rational points on curves. In: Proceedings of the Tenth Algorithmic Number Theory Symposium. The Open Book Series, vol. 1.1, pp. 187–212 (2013)

  5. Bruin, N., Poonen, B., Stoll, M.: Generalized explicit descent and its application to curves of genus 3. arXiv:1205.4456

  6. Catanese, F.: Babbage’s conjecture, contact of surfaces, symmetric determinantal varieties and applications. Invent. Math. 63(3), 433–465 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cook, R.J., Thomas, A.D.: Line bundles and homogeneous matrices. Q. J. Math. Oxf. Ser. (2) 30(120), 423–429 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dixon, A.C.: Note on the reduction of a ternary quantic to a symmetric determinant. Proc. Camb. Philos. Soc. 11, 350–351 (1902)

    MATH  Google Scholar 

  9. Dixon, J.D., Mortimer, B.: Permutation Groups. Graduate Texts in Mathematics, vol. 163. Springer, New York (1996)

    Book  MATH  Google Scholar 

  10. Dye, R.H.: Interrelations of symplectic and orthogonal groups in characteristic two. J. Algebra 59(1), 202–221 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dolgachev, I.V.: Classical Algebraic Geometry—A Modern View. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  12. Edge, W.L.: Determinantal representations of \(x^4 + y^4 + z^4\). Math. Proc. Camb. Philos. Soc. 34, 6–21 (1938)

    Article  MATH  Google Scholar 

  13. Fried, M.D., Jarden, M.: Field arithmetic. In: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 3rd edn, vol. 11. Springer, Berlin (2008)

  14. Gross, B.H., Harris, J.: On Some Geometric Constructions Related to Theta Characteristics. Contributions to Automorphic Forms, Geometry, and Number Theory, vol. 279–311. Johns Hopkins University Press, Baltimore, MD (2004)

    Google Scholar 

  15. Grothendieck, A.: Le, groupe de Brauer III. Dix Exposés sur la Cohomologie des Schémas, North-Holland, pp. 88–188. Amsterdam, Masson, Paris (1968)

  16. Harris, J.: Galois groups of enumerative problems. Duke Math. J. 46(4), 685–724 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Book  Google Scholar 

  18. Hesse, O.: Über Elimination der Variabeln aus drei algebraischen Gleichungen von zweiten Graden, mit zwei Variabeln. J. Reine Angew. Math. 28, 68–96 (1844)

    Article  MathSciNet  Google Scholar 

  19. Hesse, O.: Über die Doppeltangenten der Curven vierter Ordnung. J. Reine Angew. Math. 49, 279–332 (1855)

    Article  MathSciNet  Google Scholar 

  20. Ho, W.: Orbit parametrizations of curves. Ph.D. Thesis, Princeton University (2009)

  21. Ishitsuka, Y.: Orbit parametrizations of theta characteristics on hypersurfaces over arbitrary fields. arXiv:1412.6978

  22. Ishitsuka, Y., Ito, T.: The local–global principle for symmetric determinantal representations of smooth plane curves in characteristic two. arXiv:1412.8343

  23. Ishitsuka, Y., Ito, T., On the symmetric determinantal representations of the Fermat curves of prime degree. arXiv:1412.8345. To appear in Int. J. Number Theory

  24. Jouanolou, J.-P.: Théorèmes de Bertini et Applications. Progress in Mathematics, vol. 42. Birkhäuser Boston Inc, Boston (1983)

    MATH  Google Scholar 

  25. Kleiman, S.L.: The Picard Scheme, Fundamental Algebraic Geometry. Mathematical Surveys Monographs, vol. 123. American Mathematical Society, Providence (2005)

    Google Scholar 

  26. Liu, Q.: Algebraic Geometry and Arithmetic Curves. Translated from the French by Reinie Erné. Oxford Graduate Texts in Mathematics, vol. 6. Oxford Science Publications, Oxford University Press, Oxford (2002)

  27. Meyer-Brandis, T.: Berührungssysteme und symmetrische Darstellungen ebener Kurven. Diplomarbeit, Johannes Gutenberg-Universität Mainz, Mainz (1998)

    Google Scholar 

  28. Mumford, D.: Theta characteristics of an algebraic curve. Ann. Sci. École Norm. Sup. (4) 4, 181–192 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  29. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields. Grundlehren der Mathematischen Wissenschaften, vol. 323, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  30. Room, T.G.: The Geometry of Determinantal Loci. Cambridge University Press, Cambridge (1938)

    MATH  Google Scholar 

  31. Serre, J.-P.: Abelian \(\ell \)-adic representations and elliptic curves. McGill University Lecture Notes Written with the Collaboration of Willem Kuyk and John Labute W. A. Benjamin, Inc., New York (1968)

  32. Serre, J.-P.: Local Fields. Graduate Texts in Mathematics, vol. 67. Springer, New York (1979)

    Google Scholar 

  33. Shioda, T.: Plane quartics and Mordell–Weil lattices of type \(E_7\). Comment. Math. Univ. St. Paul. 42(1), 61–79 (1993)

    MathSciNet  MATH  Google Scholar 

  34. Tate, J.T.: Global class field theory. In: Cassels, J.W.S., Fröhlich, A. (eds.) Algebraic Number Theory. Proceedings of the Instructional Conference, Brighton pp. 162–203 (1965)

  35. Tyurin, A.N.: On intersection of quadrics. Russ. Math. Surv. 30, 51–105 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vinnikov, V.: Complete description of determinantal representations of smooth irreducible curves. Linear Algebra Appl. 125, 103–140 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vinnikov, V.: Self-adjoint determinantal representations of real plane curves. Math. Ann. 296(3), 453–479 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wall, C.T.C.: Nets of quadrics and theta-characteristics of singular curves. Philos. Trans. R. Soc. Lond. Ser. A 239, 229–269 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Some calculations done by GAP (version 4.7.5) on subgroups of the finite symplectic group \(\mathop {\mathrm {Sp}}\nolimits _{2m}({\mathbb F}_2)\) were very helpful when we studied the action of Galois groups on theta characteristics. The authors would like to thank an anonymous referee for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsushi Ito.

Additional information

The work of the first author was supported by JSPS KAKENHI Grant Number 13J01450. The work of the second author was supported by JSPS KAKENHI Grant Numbers 20674001 and 26800013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishitsuka, Y., Ito, T. The local–global principle for symmetric determinantal representations of smooth plane curves. Ramanujan J 43, 141–162 (2017). https://doi.org/10.1007/s11139-016-9775-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-016-9775-3

Keywords

Mathematics Subject Classification

Navigation