The Ramanujan Journal

, Volume 37, Issue 1, pp 89–108 | Cite as

A family of shifted harmonic sums

  • Anthony SofoEmail author
  • H. M. Srivastava


In this paper, we first develop a set of identities for Euler-type sums. We then investigate products of the shifted harmonic numbers and the reciprocal binomial coefficients. We briefly indicate relevant connections of the results presented here with those given by earlier authors. As by-products of our investigation, we derive several (presumably new) one-parameter and two-parameter summation formulas for the hypergeometric series \(\;_3F_2\;\) at argument 1.


Harmonic numbers Riemann Zeta function Integral representations Binomial coefficients Euler sums Psi (or Digamma) function Polygamma functions 

Mathematics Subject Classification

Primary 05A10 05A19 Secondary 11B83 11M06 33B15 33C20 


  1. 1.
    Bailey, D.H., Borwein, J.M., Girgensohn, R.: Experimental evaluation of Euler sums. Exp. Math. 3, 17–30 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Cheon, G.-S., El-Mikkawy, M.E.A.: Generalized harmonic number identities and a related matrix transformation. J. Korean Math. Soc. 44, 487–498 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Cheon, G.-S., El-Mikkawy, M.E.A.: Generalized harmonic numbers with Riordan arrays. J. Number Theory 128, 413–425 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Choi, J.: Certain summation formulas involving harmonic numbers and generalized harmonic numbers. Appl. Math. Comput. 218, 734–740 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Choi, J., Cvijović, D.: Values of the polygamma functions at rational arguments. J. Phys. A 40, 15019–15028 (2007); Corrigendum, ibid. 43, 239801 (2010).Google Scholar
  6. 6.
    Choi, J., Srivastava, H.M.: Some summation formulas involving harmonic numbers and generalized harmonic numbers. Math. Comput. Model. 54, 2220–2234 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Chu, W.-C.: Summation formulae involving harmonic numbers. Filomat 26(1), 143–152 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chu, W.-C.: Infinite series identities on harmonic numbers. Results Math. 61, 209–221 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Coffey, M.W., Lubbers, N.: On generalized harmonic number sums. Appl. Math. Comput. 217, 689–698 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    He, T.-X., Hu, L.-C., Yin, D.: A pair of summation formulas and their applications. Comput. Math. Appl. 58, 1340–1348 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Kölbig, K.: The polygamma function \(\psi \left( x\right) \) for \(x=1/4\) and \(x=3/4\). J. Comput. Appl. Math. 75, 43–46 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Liu, H., Wang, W.: Harmonic number identities via hypergeometric series and Bell polynomials. Integral Transform. Spec. Funct. 23, 49–68 (2012)CrossRefzbMATHGoogle Scholar
  13. 13.
    Munarini, E.: Riordan matrices and sums of harmonic numbers. Appl. Anal. Discret. Math. 5, 176–200 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Osburn, R., Schneider, C.: Gaussian hypergeometric series and supercongruences. Math. Comput. 78, 275–292 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Rassias, Th.M., Srivastava, H.M.: Some classes of infinite series associated with the Riemann zeta function and polygamma functions and generalized harmonic numbers. Appl. Math. Comput. 131, 593–605 (2002)Google Scholar
  16. 16.
    Sofo, A.: Computational Techniques for the Summation of Series. Kluwer Academic/Plenum Publishers, New York (2003)CrossRefzbMATHGoogle Scholar
  17. 17.
    Sofo, A.: Sums of derivatives of binomial coefficients. Adv. Appl. Math. 42, 123–134 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Sofo, A.: Harmonic sums and integral representations. J. Appl. Anal. 16, 265–277 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Sofo, A.: Harmonic number sums in higher powers. J. Math. Anal. 2, 15–22 (2011)MathSciNetGoogle Scholar
  20. 20.
    Sofo, A.: Summation formula involving harmonic numbers. Anal. Math. 37, 51–64 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Sofo, A.: New classes of harmonic number identities. J. Integer Seq. 15 (2012), Article 12.7.4.Google Scholar
  22. 22.
    Sofo, A.: Finite sums in higher order powers of harmonic numbers. Bull. Math. Anal. Appl. 5, 71–79 (2013)MathSciNetGoogle Scholar
  23. 23.
    Sofo, A., Srivastava, H.M.: Identities for the harmonic numbers and binomial coefficients. Ramanujan J. 25, 93–113 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Srivastava, H.M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, Dordrecht, Boston and London (2001)CrossRefzbMATHGoogle Scholar
  25. 25.
    Srivastava, H.M., Choi, J.: Zeta and \(q\)-Zeta Functions and Associated Series and Integrals. Elsevier Science Publishers, Amsterdam, London and New York (2012)Google Scholar
  26. 26.
    Srivastava, R.: Some families of combinatorial and other series identities and their applications. Appl. Math. Comput. 218, 1077–1083 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Sun, Z.-W.: On harmonic numbers and Lucas sequences. Publ. Math. Debrecen 80, 25–41 (2012)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Wang, W.: Riordan arrays and harmonic number identities. Comput. Math. Appl. 60, 1494–1509 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Wang, X., Li, M.: Dixon’s formula and identities involving harmonic numbers. J. Integer Seq. 14 (2011), Article 11.1.3.Google Scholar
  30. 30.
    Zheng, D.-Y.: Further summation formulae related to generalized harmonic numbers. J. Math. Anal. Appl. 335, 692–706 (2007)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Section of Mathematics, VU CollegeVictoria University of TechnologyMelbourneAustralia
  2. 2.Department of Mathematics and StatisticsUniversity of VictoriaVictoriaCanada

Personalised recommendations