The Ramanujan Journal

, Volume 36, Issue 1–2, pp 165–170 | Cite as

A simple proof of Andrews’s 5F4 evaluation



We give a simple proof of George Andrews’s balanced 5F4 evaluation using two fundamental principles: the nth difference of a polynomial of degree less than n is zero, and a polynomial of degree n that vanishes at n+1 points is identically zero.


Hypergeometric series evaluation Balanced 5F4 

Mathematics Subject Classification



  1. 1.
    Andrews, G.E.: Pfaff’s method. I. The Mills–Robbins–Rumsey determinant. Discrete Math. 193, 43–60 (1998) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Andrews, G.E.: Pfaff’s method. III. Comparison with the WZ method. Electron. J. Comb. 3(2), 21 (1996), 18 pp. Google Scholar
  3. 3.
    Andrews, G.E., Stanton, D.W.: Determinants in plane partition enumeration. Eur. J. Comb. 19, 273–282 (1998) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Chu, W.: Inversion techniques and combinatorial identities: balanced hypergeometric series. Rocky Mt. J. Math. 32, 561–587 (2002) CrossRefMATHGoogle Scholar
  5. 5.
    Ekhad, S.B., Zeilberger, D.: Curing the Andrews syndrome. J. Differ. Equ. Appl. 4, 299–310 (1998) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Stanton, D.: A hypergeometric hierarchy for the Andrews evaluations. Ramanujan J. 2, 499–509 (1998) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Verma, A., Jain, V.K., Jain, S.: Some summations and transformations of balanced hypergeometric series. Indian J. Pure Appl. Math. 40, 235–251 (2009) MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsBrandeis UniversityWalthamUSA

Personalised recommendations