Abstract
By means of the Bell polynomials, we establish explicit expressions of the higher-order derivatives of the binomial coefficient \(\binom{x+n}{m}\) and its reciprocal \(\binom{x+n}{m}^{-1}\), and extend the application field of the Newton–Andrews method. As examples, we apply the results to the Chu–Vandermonde–Gauss formula and the Dougall–Dixon theorem and obtain a series of harmonic number identities. This paper generalizes some works presented before and provides a way to establish infinite harmonic number identities.
Similar content being viewed by others
References
Andrews, G.E., Uchimura, K.: Identities in combinatorics. IV. Differentiation and harmonic numbers. Util. Math. 28, 265–269 (1985)
Bailey, W.N.: Generalized Hypergeometric Series. Stechert-Hafner, New York (1964)
Chen, X., Chu, W.: The Gauss 2 F 1(1)-summation theorem and harmonic number identities. Integral Transforms Spec. Funct. 20(11–12), 925–935 (2009)
Chen, X., Chu, W.: Dixon’s 3 F 2(1)-series and identities involving harmonic numbers and the Riemann zeta function. Discrete Math. 310(1), 83–91 (2010)
Chu, W.: Hypergeometric series and the Riemann zeta function. Acta Arith. 82(2), 103–118 (1997)
Chu, W.: A binomial coefficient identity associated with Beukers’ conjecture on Apéry numbers. Electron. J. Comb. 11(1), N15 (2004). 3 pp
Chu, W.: Harmonic number identities and Hermite–Padé approximations to the logarithm function. J. Approx. Theory 137(1), 42–56 (2005)
Chu, W.: Hypergeometric approach to Weideman’s conjecture. Arch. Math. 87(5), 400–406 (2006)
Chu, W.: Partial-fraction decompositions and harmonic number identities. J. Comb. Math. Comb. Comput. 60, 139–153 (2007)
Chu, W.: Infinite series identities on harmonic numbers. Results Math. 61(3–4), 209–221 (2012)
Chu, W.: Summation formulae involving harmonic numbers. Filomat 26(1), 143–152 (2012)
Chu, W., De Donno, L.: Hypergeometric series and harmonic number identities. Adv. Appl. Math. 34(1), 123–137 (2005)
Chu, W., Fu, A.M.: Dougall–Dixon formula and harmonic number identities. Ramanujan J. 18(1), 11–31 (2009)
Chu, W., Yan, Q.: Combinatorial identities on binomial coefficients and harmonic numbers. Util. Math. 75, 51–66 (2008)
Chu, W., Zheng, D.-Y.: Infinite series with harmonic numbers and central binomial coefficients. Int. J. Number Theory 5(3), 429–448 (2009)
Comtet, L.: Advanced Combinatorics. Reidel, Dordrecht (1974)
Díaz-Barrero, J.L.: Problem 11164: a recurrent identity. Am. Math. Mon. 112, 568 (2005)
Díaz-Barrero, J.L., Gibergans-Báguena, J., Popescu, P.G.: Some identities involving rational sums. Appl. Anal. Discrete Math. 1(2), 397–402 (2007)
Driver, K., Prodinger, H., Schneider, C., Weideman, J.A.C.: Padé approximations to the logarithm. II. Identities, recurrences, and symbolic computation. Ramanujan J. 11(2), 139–158 (2006)
Driver, K., Prodinger, H., Schneider, C., Weideman, J.A.C.: Padé approximations to the logarithm. III. Alternative methods and additional results. Ramanujan J. 12(3), 299–314 (2006)
Gould, H.W.: Higher order extensions of Melzak’s formula. Util. Math. 72, 23–32 (2007)
Kirschenhofer, P.: A note on alternating sums. Electron. J. Comb. 3(2) (1996). Research Paper 7. Approx. 10 pp
Kirschenhofer, P., Larcombe, P.J.: On a class of recursive-based binomial coefficient identities involving harmonic numbers. Util. Math. 73, 105–115 (2007)
Larcombe, P.J., Fennessey, E.J., Koepf, W.A.: Integral proofs of two alternating sign binomial coefficient identities. Util. Math. 66, 93–103 (2004)
Larcombe, P.J., Larsen, M.E., Fennessey, E.J.: On two classes of identities involving harmonic numbers. Util. Math. 67, 65–80 (2005)
Larsen, M.E., Larcombe, P.J.: Some binomial coefficient identities of specific and general type. Util. Math. 74, 33–53 (2007)
Liu, H., Wang, W.: Harmonic number identities via hypergeometric series and Bell polynomials. Integral Transforms Spec. Funct. 23(1), 49–68 (2012)
Osburn, R., Schneider, C.: Gaussian hypergeometric series and supercongruences. Math. Comput. 78(265), 275–292 (2009)
Paule, P., Schneider, C.: Computer proofs of a new family of harmonic number identities. Adv. Appl. Math. 31(2), 359–378 (2003)
Prodinger, H.: Human proofs of identities by Osburn and Schneider. Integers 8, A10 (2008). 8 pp
Riordan, J.: An Introduction to Combinatorial Analysis, Reprint of the 1958 Original. Dover, Mineola (2002)
Sofo, A.: Some more identities involving rational sums. Appl. Anal. Discrete Math. 2(1), 56–64 (2008)
Sofo, A.: Harmonic numbers and double binomial coefficients. Integral Transforms Spec. Funct. 20(11–12), 847–857 (2009)
Sofo, A.: Integral forms of sums associated with harmonic numbers. Appl. Math. Comput. 207(2), 365–372 (2009)
Sofo, A.: Sums of derivatives of binomial coefficients. Adv. Appl. Math. 42(1), 123–134 (2009)
Sofo, A.: Harmonic sums and integral representations. J. Appl. Anal. 16(2), 265–277 (2010)
Sofo, A.: Summation formula involving harmonic numbers. Anal. Math. 37(1), 51–64 (2011)
Sofo, A., Srivastava, H.M.: Identities for the harmonic numbers and binomial coefficients. Ramanujan J. 25(1), 93–113 (2011)
Spieß, J.: Some identities involving harmonic numbers. Math. Comput. 55(192), 839–863 (1990)
Srivastava, R.: Some combinatorial series identities and rational sums. Integral Transforms Spec. Funct. 20(1–2), 83–91 (2009)
Srivastava, R.: Some families of combinatorial and other series identities and their applications. Appl. Math. Comput. 218(3), 1077–1083 (2011)
Wang, W.: Riordan arrays and harmonic number identities. Comput. Math. Appl. 60(5), 1494–1509 (2010)
Wei, C., Gu, Q.: q-Generalizations of a family of harmonic number identities. Adv. Appl. Math. 45(1), 24–27 (2010)
Weideman, J.A.C.: Padé approximations to the logarithm. I. Derivation via differential equations. Quaest. Math. 28(3), 375–390 (2005)
Zave, D.A.: A series expansion involving the harmonic numbers. Inf. Process. Lett. 5(3), 75–77 (1976)
Zeilberger, D.: A fast algorithm for proving terminating hypergeometric identities. Discrete Math. 80(2), 207–211 (1990)
Zheng, D.-Y.: Further summation formulae related to generalized harmonic numbers. J. Math. Anal. Appl. 335(1), 692–706 (2007)
Author information
Authors and Affiliations
Corresponding author
Additional information
The first author is supported by the National Natural Science Foundation of China under Grant 11001243, the Zhejiang Provincial Natural Science Foundation of China under Grant LY13A010016, the “521” Talents Program of Zhejiang Sci-Tech University (ZSTU), and the Science Foundation of Zhejiang Sci-Tech University under Grant 1013817-Y.
Rights and permissions
About this article
Cite this article
Wang, W., Jia, C. Harmonic number identities via the Newton–Andrews method. Ramanujan J 35, 263–285 (2014). https://doi.org/10.1007/s11139-013-9511-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11139-013-9511-1