The Ramanujan Journal

, Volume 33, Issue 1, pp 23–53

# The power series expansion of certain infinite products $$q^{r}\prod_{n=1}^{\infty}(1-q^{n})^{a_{1}}(1-q^{2n})^{a_{2}}\cdots(1-q^{mn})^{a_{m}}$$

• Lerna Pehlivan
• Kenneth S. Williams
Article

## Abstract

Let ℕ, $$\mathbb{N}_{0}$$, ℤ, ℚ, and ℂ denote the sets of positive integers, nonnegative integers, integers, rational numbers, and complex numbers, respectively. If $$f(q)$$ is a complex-valued function with
$$f(q)= \sum_{n=0}^{\infty} f_{n} q^{n} \quad\bigl(q \in\mathbb{C}, \vert q \vert <1 \bigr)$$
we define
$$\bigl[f(q)\bigr]_{n}:=f_{n} \quad(n \in\mathbb{N}_{0}).$$
For $$k \in\mathbb{N}$$ we define
$$E_{k}:= \prod_{n=1}^{\infty} \bigl(1-q^{kn}\bigr) \quad\bigl(q \in\mathbb{C}, \vert q \vert <1 \bigr).$$
We show how modular equations of a special form can be used in conjunction with the representation numbers of certain quadratic forms to determine
$$\bigl[q^{r}E_{1}^{a_{1}}\cdots E_{m}^{a_{m}} \bigr]_{n} \quad(r \in\mathbb{N}_{0},m \in \mathbb{N},a_{1}, \ldots,a_{m} \in\mathbb{Z})$$
for certain products $$q^{r}E_{1}^{a_{1}}\cdots E_{m}^{a_{m}}$$. For example, we show that
$$\biggl[q^{2}\frac{E_{1}^{4}E_{16}^{4}}{E_{2}^{2}E_{8}^{2}} \biggr]_{n} = \begin{cases} 0 & \mbox{if}\ n \equiv1\ (\mbox{mod}\ 4),\\ - \sigma(N) & \mbox{if}\ n \equiv3\ (\mbox{mod}\ 4),\\ \sigma(N) & \mbox{if}\ n \equiv2\ (\mbox{mod}\ 4),\\ 4\sigma(N) & \mbox{if}\ n \equiv4\ (\mbox{mod}\ 8),\\ 0 & \mbox{if}\ n \equiv0\ (\mbox{mod}\ 8), \end{cases}$$
where $$N$$ denotes the odd part of the positive integer $$n$$ and
$$\sigma(n): =\sum_{ \begin{array}{c} \scriptstyle d \in\mathbb{N}\\[-3pt] \scriptstyle d \mid n \end{array}} d.$$

## Keywords

Infinite products Quadratic forms Representations Theta functions Modular equations

## Mathematics Subject Classification

11E25 11F27 11B65 05A19

## References

1. 1.
Alaca, A.: Representations by quaternary quadratic forms whose coefficients are 1, 3 and 9. Acta Arith. 136, 151–166 (2009)
2. 2.
Alaca, A., Alaca, Ş., Lemire, M.F., Williams, K.S.: Nineteen quaternary quadratic forms. Acta Arith. 130, 277–310 (2007)
3. 3.
Alaca, A., Alaca, Ş., Lemire, M.F., Williams, K.S.: Jacobi’s identity and representations of integers by certain quaternary quadratic forms. Int. J. Mod. Math. 2, 143–176 (2007)
4. 4.
Alaca, A., Alaca, Ş., Lemire, M.F., Williams, K.S.: The number of representations of a positive integer by certain quaternary quadratic forms. Int. J. Number Theory 5, 13–40 (2009)
5. 5.
Alaca, A., Alaca, Ş., Williams, K.S.: On the two-dimensional theta functions of the Borweins. Acta Arith. 124, 177–195 (2006)
6. 6.
Alaca, A., Alaca, Ş., Williams, K.S.: On the quaternary forms $$x^{2}+y^{2}+z^{2}+5t^{2}$$, $$x^{2}+y^{2}+5z^{2}+5t^{2}$$ and $$x^{2}+5y^{2}+5z^{2}+5t^{2}$$. JP J. Algebra Number Theory Appl. 9, 37–53 (2007)
7. 7.
Alaca, A., Alaca, Ş., Williams, K.S.: Liouville’s sextanary quadratic forms $$x^{2}+y^{2}+z^{2}+t^{2}+2u^{2}+2v^{2}$$, $$x^{2}+y^{2}+2z^{2}+2t^{2}+2u^{2}+2v^{2}$$ and $$x^{2}+2y^{2}+2z^{2}+2t^{2}+2u^{2}+4v^{2}$$, Far East. J. Math. Sci. 30, 547–556 (2008)
8. 8.
Alaca, Ş., Williams, K.S.: The number of representations of a positive integer by certain octonary quadratic forms. Funct. Approx. Comment. Math. 43, 45–54 (2010)
9. 9.
Berndt, B.C.: Ramanujan’s Notebooks Part III. Springer, New York (1991)
10. 10.
Berndt, B.C.: Number Theory in the Spirit of Ramanujan. Am. Math. Soc., Providence (2006)
11. 11.
Bhargava, S.: Some applications of Ramanujan’s remarkable summation formula. In: Ramanujan Rediscovered. Proceedings of a Conference on Elliptic Functions, Partitions, and $$q$$-Series in Memory of K. Venkatachaliengar, Bangalore, 1–5 June 2009. Ramanujan Mathematical Society Lecture Notes Series, vol. 14, pp. 63–72. Ramanujan Mathematical Society, Thiruchirappalli (2010) Google Scholar
12. 12.
Blecksmith, R., Brillhart, J., Gerst, I.: Parity results for certain partition functions and identities similar to theta function identities. Math. Comput. 48, 29–38 (1987)
13. 13.
Chen, S.-L., Huang, S.-S.: Identities for certain products of theta functions. Ramanujan J. 8, 5–12 (2004)
14. 14.
Cooper, S., Hirschhorn, M.: On some sum-to-product identities. Bull. Aust. Math. Soc. 63, 353–365 (2001)
15. 15.
Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 4th edn. Oxford University Press, London (1960)
16. 16.
Huard, J.G., Ou, Z.M., Spearman, B.K., Williams, K.S.: Elementary evaluation of certain convolution sums involving divisor functions. In: Bennett, M.A., et al. (eds.) Number Theory for the Millennium, II, pp. 229–274. A K Peters, Natick (2002) Google Scholar
17. 17.
Liouville, J.: Sur la forme $$x^{2}+y^{2}+3(z^{2}+t^{2})$$. J. Math. Pures Appl. 5, 147–152 (1860) Google Scholar
18. 18.
Liouville, J.: Sur la forme $$x^{2}+y^{2}+2(z^{2}+t^{2})$$. J. Math. Pures Appl. 5, 269–272 (1860) Google Scholar
19. 19.
Liouville, J.: Sur la forme $$x^{2}+y^{2}+4(z^{2}+t^{2})$$. J. Math. Pures Appl. 5, 305–308 (1860) Google Scholar
20. 20.
Liouville, J.: Sur la forme $$x^{2}+2y^{2}+4z^{2}+8t^{2}$$. J. Math. Pures Appl. 6, 409–416 (1861) Google Scholar
21. 21.
Liouville, J.: Sur la forme $$x^{2}+2y^{2}+4z^{2}+4t^{2}$$. J. Math. Pures Appl. 7, 62–64 (1862) Google Scholar
22. 22.
Liouville, J.: Sur la forme $$x^{2}+2y^{2}+8z^{2}+8t^{2}$$. J. Math. Pures Appl. 7, 65–68 (1862) Google Scholar
23. 23.
Liouville, J.: Sur la forme $$x^{2}+y^{2}+2z^{2}+4t^{2}$$. J. Math. Pures Appl. 7, 99–100 (1862) Google Scholar
24. 24.
Liouville, J.: Sur la forme $$x^{2}+y^{2}+4z^{2}+8t^{2}$$. J. Math. Pures Appl. 7, 103–104 (1862) Google Scholar
25. 25.
Liouville, J.: Sur la forme $$x^{2}+y^{2}+8z^{2}+8t^{2}$$. J. Math. Pures Appl. 7, 109–112 (1862) Google Scholar
26. 26.
Liouville, J.: Sur la forme $$x^{2}+xy+y^{2}+z^{2}+zt+t^{2}$$. J. Math. Pures Appl. 8, 141–144 (1863) Google Scholar
27. 27.
Liouville, J.: Sur la forme $$x^{2}+xy+y^{2}+2z^{2}+2zt+2t^{2}$$. J. Math. Pures Appl. 8, 308–310 (1863) Google Scholar
28. 28.
Liouville, J.: Sur la forme $$2x^{2}+2xy+2y^{2}+3z^{2}+3zt+3t^{2}$$. J. Math. Pures Appl. 9, 183–184 (1864) Google Scholar
29. 29.
Liouville, J.: Sur la forme $$x^{2}+xy+y^{2}+3z^{2}+3zt+3t^{2}$$. J. Math. Pures Appl. 9, 223–224 (1864) Google Scholar
30. 30.
Williams, K.S.: On the representations of a positive integer by the forms $$x^{2}+y^{2}+z^{2}+2t^{2}$$ and $$x^{2}+2y^{2}+2z^{2}+2t^{2}$$. Int. J. Mod. Math. 3, 225–230 (2008)
31. 31.
Williams, K.S.: Number Theory in the Spirit of Liouville. Cambridge University Press, Cambridge (2011)
32. 32.
Williams, K.S.: Fourier series of a class of eta quotients. Int. J. Number Theory 8, 993–1004 (2012)