Skip to main content
Log in

The Lie theory of certain modular form and arithmetic identities

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Modular form identities lying in the framework of Shimura’s theory of nearly holomorphic modular forms are obtained by Lie theoretic means as consequences of identities relating the Maass–Shimura operator and the Rankin–Cohen brackets, which in turn follow from change-of-basis formulae in the theory of Verma modules. The Lie theoretic origin of known van der Pol and Lahiri-type arithmetic identities is thus unveiled, and similar new ones are derived in a systematic way. These identities relate divisor functions, Ramanujan’s τ-function and functions defined by the Fourier coefficients of other cusp forms and involve hybrid coefficients, drawn from Lie theory and number theory, given explicitly by formulae combining the arithmetic Clebsch–Gordan coefficients and the Bernoulli numbers. A few side results, interesting in their own right, such as Leibniz-type rules satisfied by the Rankin–Cohen brackets, are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borel, A.: Automorphic Forms on SL 2(ℝ). Cambridge Univ. Press, Cambridge (1997)

    Book  Google Scholar 

  2. Clebsch, A.: Theorie der binären algebraischen Formen. Teubner, Leipzig (1872)

    MATH  Google Scholar 

  3. Cohen, H.: Sums involving the values of negative integers of L-functions of quadratic characters. Math. Ann. 217, 271–285 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. El Gradechi, A.M.: The Lie theory of the Rankin–Cohen brackets and allied bi-differential operators. Adv. Math. 207, 484–531 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gelfand, I.M., Fomin, S.V.: Geodesic flows on manifolds of constant negative curvature. Am. Math. Soc. Transl. 2 1, 49–65 (1955)

    MathSciNet  Google Scholar 

  6. Gelfand, I.M., Graev, M.I., Piatetski-Shapiro, I.I.: Representation Theory and Automorphic Functions. Saunders, Philadelphia (1969)

    Google Scholar 

  7. Gordan, P.: Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist. J. Reine Angew. Math. 1868, 323–354 (1868)

    Article  Google Scholar 

  8. Gordan, P.: Vorlesungen über Invariantentheorie. Chelsea, New York (1987)

    MATH  Google Scholar 

  9. Harish-Chandra: Automorphic forms on a semisimple Lie group. Proc. Natl. Acad. Sci. USA 45, 570–573 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  10. Harish-Chandra: Automorphic Forms on Semisimple Lie Groups (Notes by G.J.M. Mars). Lecture Notes in Math., vol. 62. Springer, Berlin (1968)

    Google Scholar 

  11. Harris, M.: A note on three lemmas of Shimura. Duke Math. J. 46, 871–879 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Holman, W.J., Biedenharn, L.C.: A general study of the Wigner coefficients of SU(1,1). Ann. Phys. 47, 205–231 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  13. Howe, R., Tan, E.-C.: Nonabelian Harmonic Analysis. Springer, New York (1992)

    Google Scholar 

  14. Lahiri, D.B.: On Ramanujan’s function τ(n) and the divisor function σ k (n), I. Bull. Calcutta Math. Soc. 38, 193–206 (1946)

    MathSciNet  MATH  Google Scholar 

  15. Lahiri, D.B.: On Ramanujan’s function τ(n) and the divisor function σ k (n), II. Bull. Calcutta Math. Soc. 39, 33–52 (1947)

    MathSciNet  MATH  Google Scholar 

  16. Lang, S.: SL 2(ℝ). Addison-Wesley, Reading (1975)

    Google Scholar 

  17. Lanphier, D.: Maass operators and van der Pol-type identities for Ramanujan’s tau function. Acta Arith. 113, 157–167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lanphier, D.: Combinatorics of Maass–Shimura operators. J. Number Theory 128, 2467–2487 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lanphier, D., Takloo-Bighash, R.: On Rankin–Cohen brackets of eigenforms. J. Ramanujan Math. Soc. 19, 253–259 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Maass, H.: Die Differentialgleichungen in der Theorie der elliptischen Modulfunktionen. Math. Ann. 125, 235–263 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moody, R.V., Pianzola, A.: Lie Algebras with Triangular Decompositions. Wiley, New York (1995)

    MATH  Google Scholar 

  22. van der Pol, B.: On a non-linear partial differential equation satisfied by the logarithm of the Jacobian theta-functions, with arithmetical applications. I & II. Nederl. Akad. Wetensch. Proc. Ser. A 54 (= Indag. Math. 13), 261–271 & 272–284 (1951)

  23. Ramanujan, S.: On certain arithmetical functions. Trans. Camb. Philos. Soc. 22, 159–184 (1916)

    Google Scholar 

  24. Repka, J.: Tensor products of unitary representations of SL 2(ℝ). Am. J. Math. 100, 747–774 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. Resnikoff, H.L.: On differential operators and automorphic forms. Trans. Am. Math. Soc. 124, 334–346 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  26. Serre, J.-P.: A Course in Arithmetic. Graduate Texts in Math., vol. 7. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  27. Shimura, G.: On some arithmetic properties of modular forms of one and several variables. Ann. Math. 102, 491–515 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shimura, G.: The special values of the zeta functions associated with cusp forms. Commun. Pure Appl. Math. 29, 783–804 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  29. Springer, T.A.: Invariant Theory. Lecture Notes in Math., vol. 585. Springer, Berlin (1977)

    MATH  Google Scholar 

  30. Zagier, D.: Modular forms and differential operators. Proc. Indian Acad. Sci. Math. Sci. 104, 57–75 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zagier, D.: Elliptic modular forms and their applications. In: The 1-2-3 of Modular Forms, pp. 1–103. Springer, Berlin (2008)

    Chapter  Google Scholar 

  32. Zhang, G.: Rankin–Cohen brackets, transvectants and covariant differential operators. Math. Z. 264, 513–519 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine M. El Gradechi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Gradechi, A.M. The Lie theory of certain modular form and arithmetic identities. Ramanujan J 31, 397–433 (2013). https://doi.org/10.1007/s11139-012-9415-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-012-9415-5

Keywords

Mathematics Subject Classification (2010)

Navigation