Skip to main content
Log in

Special functions associated with a certain fourth-order differential equation

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We develop a theory of “special functions” associated with a certain fourth-order differential operator \(\mathcal{D}_{\mu,\nu}\) on ℝ depending on two parameters μ,ν. For integers μ,ν≥−1 with μ+ν∈2ℕ0, this operator extends to a self-adjoint operator on L 2(ℝ+,x μ+ν+1 dx) with discrete spectrum. We find a closed formula for the generating functions of the eigenfunctions, from which we derive basic properties of the eigenfunctions such as orthogonality, completeness, L 2-norms, integral representations, and various recurrence relations.

This fourth-order differential operator \(\mathcal{D}_{\mu,\nu}\) arises as the radial part of the Casimir action in the Schrödinger model of the minimal representation of the group O(p,q), and our “special functions” give K-finite vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  2. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, Vols. I, II. McGraw-Hill, New York (1953)

    Google Scholar 

  3. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms, Vol. II. McGraw-Hill, New York (1954)

    MATH  Google Scholar 

  4. Fox, C.: The G and H functions as symmetrical Fourier kernels. Trans. Am. Math. Soc. 98, 395–429 (1961)

    MATH  Google Scholar 

  5. Hilgert, J., Kobayashi, T., Mano, G., Möllers, J.: Orthogonal polynomials associated to a certain fourth order differential equation. arXiv:0907.2612

  6. Howe, R., Tan, E.-C., Willenbring, J.F.: Stable branching rules for classical symmetric pairs. Trans. Am. Math. Soc. 357, 1601–1626 (2005) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kobayashi, T., Mano, G.: Integral formula of the unitary inversion operator for the minimal representation of O(p,q). Proc. Japan Acad. Ser. A (2007), 27–31

  8. Kobayashi, T., Mano, G.: The inversion formula and holomorphic extension of the minimal representation of the conformal group. In: Li, J.S., Tan, E.C., Wallach, N., Zhu, C.B. (eds.) Harmonic Analysis, Group Representations, Automorphic Forms and Invariant Theory: In Honor of Roger Howe, pp. 159–223. World Scientific, Singapore (2007) (cf. math.RT/0607007)

    Google Scholar 

  9. Kobayashi, T., Mano, G.: The Schrödinger model for the minimal representation of the indefinite orthogonal group O(p,q). Mem. Amer. Math. Soc. 212(1000) (2011). doi:10.1090/S0065-9266-2011-00592-7 (available at arXiv:0712.1769)

    Google Scholar 

  10. Kobayashi, T., Ørsted, B.: Analysis on the minimal representation of O(p,q). III. Ultrahyperbolic equations on ℝp−1,q−1. Adv. Math. 180, 551–595 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kostant, B.: The vanishing of scalar curvature and the minimal representation of SO(4,4). In: Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Paris, 1989. Progr. Math., vol. 92, pp. 85–124. Birkhäuser, Boston (1990)

    Google Scholar 

  12. Warner, G.: Harmonic Analysis on Semi-Simple Lie Groups. I. Die Grundlehren der mathematischen Wissenschaften, vol. 188. Springer, New York (1972)

    MATH  Google Scholar 

  13. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1944)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Kobayashi.

Additional information

T. Kobayashi was partially supported by Grant-in-Aid for Scientific Research (B) (18340037, 22340026), Japan Society for the Promotion of Science, and the Alexander Humboldt Foundation.

J. Möllers was partially supported by the International Research Training Group 1133 “Geometry and Analysis of Symmetries” and the GCOE program of the University of Tokyo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilgert, J., Kobayashi, T., Mano, G. et al. Special functions associated with a certain fourth-order differential equation. Ramanujan J 26, 1–34 (2011). https://doi.org/10.1007/s11139-011-9315-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-011-9315-0

Keywords

Mathematics Subject Classification (2000)

Navigation