Skip to main content

Semi-regular continued fractions and an exact formula for the moments of the Minkowski question mark function

Abstract

This paper continues investigations on various integral transforms of the Minkowski question mark function. In this work we finally establish the long-sought formula for the moments, which does not explicitly involve regular continued fractions, though it has a hidden nice interpretation in terms of semi-regular continued fractions. The proof is self-contained and does not rely on previous results by the author.

This is a preview of subscription content, access via your institution.

References

  1. An extensive bibliography on the Minkowski question mark function. Available at http://www.alkauskas.puslapiai.lt/minkowski.htm

  2. Alkauskas, G.: An asymptotic formula for the moments of Minkowski question mark function in the interval [0,1]. Lith. Math. J. 48(4), 357–367 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alkauskas, G.: Generating and zeta functions, structure, spectral and analytic properties of the moments of the Minkowski question mark function. Involve 2(2), 121–159 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alkauskas, G.: The Minkowski question mark function: explicit series for the dyadic period function and moments. Math. Comput. 79(269), 383–418 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alkauskas, G.: The moments of Minkowski question mark function: the dyadic period function. Glasg. Math. J. 52(1), 41–64 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Grabner, P.J., Kirschenhofer, P., Tichy, R.F.: Combinatorial and arithmetical properties of linear numeration systems. Combinatorica 22(2), 245–267 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kesseböhmer, M., Stratmann, B.O.: Fractal analysis for sets of non-differentiability of Minkowski’s question mark function. J. Number Theory 128(9), 2663–2686 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lamberger, M.: On a family of singular measures related to Minkowski’s ?(x) function. Indag. Math. (New Ser.) 17(1), 45–63 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Panti, G.: Multidimensional continued fractions and a Minkowski function. Monatshefte Math. 154(3), 247–264 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ramharter, G.: On Minkowski’s singular function. Proc. Am. Math. Soc. 99(3), 596–597 (1987)

    MATH  MathSciNet  Google Scholar 

  11. Ryde, F.: On the relation between two Minkowski functions. J. Number Theory 17(1), 47–51 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giedrius Alkauskas.

Additional information

The author gratefully acknowledges support from the Austrian Science Fund (FWF) under the project Nr. P20847-N18.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alkauskas, G. Semi-regular continued fractions and an exact formula for the moments of the Minkowski question mark function. Ramanujan J 25, 359–367 (2011). https://doi.org/10.1007/s11139-011-9307-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-011-9307-0

Keywords

  • The Minkowski question mark function
  • Moments of distribution
  • Periods
  • Bessel functions
  • Semi-regular continued fractions
  • The Farey tree

Mathematics Subject Classification (2000)

  • 11A55
  • 26A30
  • 33C10
  • 11F67