Skip to main content
Log in

Rational decomposition of modular forms

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We prove explicit formulas decomposing cusp forms of even weight for the modular group, in terms of generators having rational periods, and in terms of generators having rational Fourier coefficients. Using the Shimura correspondence, we also give a decomposition of Hecke cusp forms of half integral weight k+1/2 with k even in terms of forms with rational Fourier coefficients, given by Rankin–Cohen brackets of theta series with Eisenstein series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choie, Y.J., Zagier, D.: Rational period functions for PSL(2,Z). Contemp. Math. 143, 89–108 (1993)

    MathSciNet  Google Scholar 

  2. Cohen, H.: A lifting of modular forms in one variable to Hilbert modular forms in two variables. In: Modular Functions of One Variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Lecture Notes in Math., vol. 627, pp. 175–196. Springer, Berlin (1977)

    Google Scholar 

  3. Conrey, J.B., Farmer, D.W., Wallace, P.J.: Factoring Hecke polynomials modulo a prime. Pac. J. Math. 196(1), 123–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gangl, H., Kaneko, M., Zagier, D.: Double zeta values and modular forms. In: Automorphic Forms and Zeta Functions, pp. 71–106. World Scientific, Hackensack (2006)

    Chapter  Google Scholar 

  5. Kohnen, W., Zagier, D.: Values of L-series of modular forms at the center of the critical strip. Invent. Math. 64(2), 175–198 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kohnen, W., Zagier, D.: Modular forms with rational periods. In: Rankin R.A. (ed.) Modular Forms. Ellis Horwood Series in Math. and Its Applications (1984)

    Google Scholar 

  7. Kramer, D.: On the values at integers of the Dedekind zeta function of a real quadratic field. Trans. Am. Math. Soc. 299(1), 59–79 (1987)

    Article  MATH  Google Scholar 

  8. Lang, S.: Introduction to Modular Forms. Springer, Berlin (1976)

    MATH  Google Scholar 

  9. Manin, Ju.I.: Periods of parabolic forms and p-adic Hecke series. Math. USSR Sb. 21(1), 371–393 (1973)

    Article  MathSciNet  Google Scholar 

  10. Pasol, V.: A modular symbol with values in cusp forms. arXiv:math/0611704v1

  11. Skoruppa, N.-P.: A quick combinatorial proof of Eisenstein series identities. J. Number Theory 43, 68–73 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. In: Modular Functions of One Variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976). Lecture Notes in Math., vol. 627, pp. 175–196. Springer, Berlin (1977)

    Google Scholar 

  13. Zagier, D.: Hecke operators and periods of modular forms. Isr. Math. Conf. Proc. 3, 321–336 (1990)

    MathSciNet  Google Scholar 

  14. Zagier, D.: Periods of modular forms and Jacobi theta functions. Invent. Math. 104, 449–465 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zagier, D.: Periods of modular forms, traces of Hecke operators, and multiple zeta values. In: Research into Automorphic Forms and L Functions, Kyoto, 1992. Sūrikaisekikenkyūsho Kōkyūroku, vol. 843, pp. 162–170 (1993) (in Japanese)

    Google Scholar 

  16. Zwegers, S.P.: Mock theta functions, Thesis, Utrecht, 2002. Available at http://igitur-archive.library.uu.nl/dissertations/2003-0127-094324/inhoud.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru A. Popa.

Additional information

This work was supported in part by the European Community’s Seventh Framework Programme under grant agreement PIRG05-GA-2009-248569.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popa, A.A. Rational decomposition of modular forms. Ramanujan J 26, 419–435 (2011). https://doi.org/10.1007/s11139-011-9301-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-011-9301-6

Keywords

Mathematics Subject Classification (2000)

Navigation