The Ramanujan Journal

, Volume 23, Issue 1–3, pp 17–44 | Cite as

Eisenstein series and Ramanujan-type series for 1/π



Using certain representations for Eisenstein series, we uniformly derive several Ramanujan-type series for 1/π.


Eisenstein series Theta-functions Modular equations 

Mathematics Subject Classification (2000)

33C05 33E05 11F11 11R29 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook, Part II. Springer, New York (2009) MATHGoogle Scholar
  2. 2.
    Bailey, W.N.: Generalized Hypergeometric Series. Cambridge University Press, London (1935) MATHGoogle Scholar
  3. 3.
    Baruah, N.D., Berndt, B.C.: Ramanujan’s series for 1/π arising from his cubic and quartic theories of elliptic functions. J. Math. Anal. Appl. 341, 357–371 (2008) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bauer, G.: Von den Coefficienten der Reihen von Kugelfunctionen einer Variabeln. J. Reine Angew. Math. 56, 101–121 (1859) MATHGoogle Scholar
  5. 5.
    Berndt, B.C.: Ramanujan’s Notebooks, Part II. Springer, New York (1989) MATHGoogle Scholar
  6. 6.
    Berndt, B.C.: Ramanujan’s Notebooks, Part III. Springer, New York (1991) MATHGoogle Scholar
  7. 7.
    Berndt, B.C.: Ramanujan’s Notebooks, Part V. Springer, New York (1998) MATHGoogle Scholar
  8. 8.
    Berndt, B.C., Chan, H.H.: Notes on Ramanujan’s singular moduli. In: Gupta, R., Williams, K.S. (eds.) Number Theory, pp. 7–16. Fifth Conference of the Canadian Number Theory Association. American Mathematical Society, Providence (1999) Google Scholar
  9. 9.
    Berndt, B.C., Chan, H.H.: Eisenstein series and approximations to π. Ill. J. Math. 45, 75–90 (2001) MATHMathSciNetGoogle Scholar
  10. 10.
    Berndt, B.C., Rankin, R.A.: Ramanujan: Letters and Commentary. American Mathematical Society/London Mathematical Society, Providence/London (1995) MATHGoogle Scholar
  11. 11.
    Berndt, B.C., Chan, H.H., Zhang, L.-C.: Ramanujan’s singular moduli. Ramanujan J. 1, 53–74 (1997) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Berndt, B.C., Chan, H.H., Liaw, W.-C.: On Ramanujan’s quartic theory of elliptic functions. J. Number Theory 88, 129–156 (2001) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Borwein, J.M., Borwein, P.B.: Pi and the AGM; A Study in Analytic Number Theory and Computational Complexity. Wiley, New York (1987) MATHGoogle Scholar
  14. 14.
    Borwein, J.M., Borwein, P.B.: Ramanujan’s rational and algebraic series for 1/π. J. Indian Math. Soc. 51, 147–160 (1987) MATHMathSciNetGoogle Scholar
  15. 15.
    Borwein, J.M., Borwein, P.B.: More Ramanujan-type series for 1/π. In: Andrews, G.E., Askey, R.A., Berndt, B.C., Ramanathan, K.G., Rankin, R.A. (eds.) Ramanujan Revisited, pp. 359–374. Academic Press, Boston (1988) Google Scholar
  16. 16.
    Borwein, J.M., Borwein, P.B.: Some observations on computer aided analysis. Not. Am. Math. Soc. 39, 825–829 (1992) Google Scholar
  17. 17.
    Borwein, J.M., Borwein, P.B.: Class number three Ramanujan type series for 1/π. J. Comput. Appl. Math. 46, 281–290 (1993) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Borwein, J.M., Borwein, P.B., Bailey, D.H.: Ramanujan, modular equations, and approximations to pi or how to compute one billion digits of pi. Am. Math. Mon. 96, 201–219 (1989) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Chan, H.H., Liaw, W.-C.: Cubic modular equations and new Ramanujan-type series for 1/π. Pac. J. Math. 192, 219–238 (2000) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Chan, H.H., Loo, K.P.: Ramanujan’s cubic continued fraction revisited. Acta Arith. 126, 305–313 (2007) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Chan, H.H., Verrill, H.: The Apéry numbers, the Almkvist-Zudilin numbers and new series for 1/π. Math. Res. Lett. 16, 405–420 (2009) MATHMathSciNetGoogle Scholar
  22. 22.
    Chan, H.H., Liaw, W.-C., Tan, V.: Ramanujan’s class invariant λ n and a new class of series for 1/π. J. Lond. Math. Soc. 64(2), 93–106 (2001) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Chan, H.H., Chan, S.H., Liu, Z.: Domb’s numbers and Ramanujan-Sato type series for 1/π. Adv. Math. 186, 396–410 (2004) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Chowla, S.: Series for 1/K and 1/K 2. J. Lond. Math. Soc. 3, 9–12 (1928) CrossRefGoogle Scholar
  25. 25.
    Chowla, S.: On the sum of a certain infinite series. Tôhoku Math. J. 29, 291–295 (1928) MATHGoogle Scholar
  26. 26.
    Chowla, S.: The Collected Papers of Sarvadaman Chowla, vol. 1. Les Publications Centre de Recherches Mathématiques, Montreal (1999) Google Scholar
  27. 27.
    Chudnovsky, D.V., Chudnovsky, G.V.: Approximation and complex multiplication according to Ramanujan. In: Andrews, G.E., Askey, R.A., Berndt, B.C., Ramanathan, K.G., Rankin, R.A. (eds.) Ramanujan Revisited, pp. 375–472. Academic Press, Boston (1988) Google Scholar
  28. 28.
    Guillera, J.: Some binomial series obtained by the WZ-method. Adv. Appl. Math. 29, 599–603 (2002) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Guillera, J.: About a new kind of Ramanujan-type series. Exp. Math. 12, 507–510 (2003) MATHMathSciNetGoogle Scholar
  30. 30.
    Guillera, J.: Generators of some Ramanujan formulas. Ramanujan J. 11, 41–48 (2006) MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Guillera, J.: A new method to obtain series for 1/π and 1/π 2. Exp. Math. 15, 83–89 (2006) MATHMathSciNetGoogle Scholar
  32. 32.
    Guillera, J.: Hypergeometric identities for 10 extended Ramanujan type series. Ramanujan J. 15, 219–234 (2008) MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Hardy, G.H.: Some formulae of Ramanujan. Proc. Lond. Math. Soc. 22(2), xii–xiii (1924) MathSciNetGoogle Scholar
  34. 34.
    Hardy, G.H.: Ramanujan. Cambridge University Press, Cambridge (1940); reprinted by Chelsea, New York (1960); reprinted by the American Mathematical Society, Providence (1999) Google Scholar
  35. 35.
    Hardy, G.H.: Collected Papers, vol. 4. Clarendon Press, Oxford (1969) Google Scholar
  36. 36.
    Ramanujan, S.: Modular equations and approximations to π. Quart. J. Math. (Oxford) 45, 350–372 (1914) MATHGoogle Scholar
  37. 37.
    Ramanujan, S.: Collected Papers. Cambridge University Press, Cambridge (1927); reprinted by Chelsea, New York (1962); reprinted by the American Mathematical Society, Providence (2000) MATHGoogle Scholar
  38. 38.
    Ramanujan, S.: Notebooks (2 volumes). Tata Institute of Fundamental Research, Bombay (1957) Google Scholar
  39. 39.
    Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi (1988) MATHGoogle Scholar
  40. 40.
    Zudilin, W.: Ramanujan-type formulae and irrationality measures of certain multiples of π. Mat. Sb. 196, 51–66 (2005) MathSciNetGoogle Scholar
  41. 41.
    Zudilin, W.: Quadratic transformations and Guillera’s formulae for 1/π 2. Math. Zametki 81, 335–340 (2007) (Russian); Math. Notes 81, 297–301 (2007) MathSciNetGoogle Scholar
  42. 42.
    Zudilin, W.: Ramanujan-type formulae for 1/π: A second wind? In: Yui, N., Verrill, H., Doran, C.F. (eds.) Modular Forms and String Duality. Fields Institute Communications, vol. 54, pp. 179–188. American Mathematical Society & The Fields Institute for Research in Mathematical Sciences, Providence (2008) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mathematical SciencesTezpur UniversitySonitpurIndia
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations