Abstract
Using certain representations for Eisenstein series, we uniformly derive several Ramanujan-type series for 1/π.
This is a preview of subscription content, access via your institution.
References
Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook, Part II. Springer, New York (2009)
Bailey, W.N.: Generalized Hypergeometric Series. Cambridge University Press, London (1935)
Baruah, N.D., Berndt, B.C.: Ramanujan’s series for 1/π arising from his cubic and quartic theories of elliptic functions. J. Math. Anal. Appl. 341, 357–371 (2008)
Bauer, G.: Von den Coefficienten der Reihen von Kugelfunctionen einer Variabeln. J. Reine Angew. Math. 56, 101–121 (1859)
Berndt, B.C.: Ramanujan’s Notebooks, Part II. Springer, New York (1989)
Berndt, B.C.: Ramanujan’s Notebooks, Part III. Springer, New York (1991)
Berndt, B.C.: Ramanujan’s Notebooks, Part V. Springer, New York (1998)
Berndt, B.C., Chan, H.H.: Notes on Ramanujan’s singular moduli. In: Gupta, R., Williams, K.S. (eds.) Number Theory, pp. 7–16. Fifth Conference of the Canadian Number Theory Association. American Mathematical Society, Providence (1999)
Berndt, B.C., Chan, H.H.: Eisenstein series and approximations to π. Ill. J. Math. 45, 75–90 (2001)
Berndt, B.C., Rankin, R.A.: Ramanujan: Letters and Commentary. American Mathematical Society/London Mathematical Society, Providence/London (1995)
Berndt, B.C., Chan, H.H., Zhang, L.-C.: Ramanujan’s singular moduli. Ramanujan J. 1, 53–74 (1997)
Berndt, B.C., Chan, H.H., Liaw, W.-C.: On Ramanujan’s quartic theory of elliptic functions. J. Number Theory 88, 129–156 (2001)
Borwein, J.M., Borwein, P.B.: Pi and the AGM; A Study in Analytic Number Theory and Computational Complexity. Wiley, New York (1987)
Borwein, J.M., Borwein, P.B.: Ramanujan’s rational and algebraic series for 1/π. J. Indian Math. Soc. 51, 147–160 (1987)
Borwein, J.M., Borwein, P.B.: More Ramanujan-type series for 1/π. In: Andrews, G.E., Askey, R.A., Berndt, B.C., Ramanathan, K.G., Rankin, R.A. (eds.) Ramanujan Revisited, pp. 359–374. Academic Press, Boston (1988)
Borwein, J.M., Borwein, P.B.: Some observations on computer aided analysis. Not. Am. Math. Soc. 39, 825–829 (1992)
Borwein, J.M., Borwein, P.B.: Class number three Ramanujan type series for 1/π. J. Comput. Appl. Math. 46, 281–290 (1993)
Borwein, J.M., Borwein, P.B., Bailey, D.H.: Ramanujan, modular equations, and approximations to pi or how to compute one billion digits of pi. Am. Math. Mon. 96, 201–219 (1989)
Chan, H.H., Liaw, W.-C.: Cubic modular equations and new Ramanujan-type series for 1/π. Pac. J. Math. 192, 219–238 (2000)
Chan, H.H., Loo, K.P.: Ramanujan’s cubic continued fraction revisited. Acta Arith. 126, 305–313 (2007)
Chan, H.H., Verrill, H.: The Apéry numbers, the Almkvist-Zudilin numbers and new series for 1/π. Math. Res. Lett. 16, 405–420 (2009)
Chan, H.H., Liaw, W.-C., Tan, V.: Ramanujan’s class invariant λ n and a new class of series for 1/π. J. Lond. Math. Soc. 64(2), 93–106 (2001)
Chan, H.H., Chan, S.H., Liu, Z.: Domb’s numbers and Ramanujan-Sato type series for 1/π. Adv. Math. 186, 396–410 (2004)
Chowla, S.: Series for 1/K and 1/K 2. J. Lond. Math. Soc. 3, 9–12 (1928)
Chowla, S.: On the sum of a certain infinite series. Tôhoku Math. J. 29, 291–295 (1928)
Chowla, S.: The Collected Papers of Sarvadaman Chowla, vol. 1. Les Publications Centre de Recherches Mathématiques, Montreal (1999)
Chudnovsky, D.V., Chudnovsky, G.V.: Approximation and complex multiplication according to Ramanujan. In: Andrews, G.E., Askey, R.A., Berndt, B.C., Ramanathan, K.G., Rankin, R.A. (eds.) Ramanujan Revisited, pp. 375–472. Academic Press, Boston (1988)
Guillera, J.: Some binomial series obtained by the WZ-method. Adv. Appl. Math. 29, 599–603 (2002)
Guillera, J.: About a new kind of Ramanujan-type series. Exp. Math. 12, 507–510 (2003)
Guillera, J.: Generators of some Ramanujan formulas. Ramanujan J. 11, 41–48 (2006)
Guillera, J.: A new method to obtain series for 1/π and 1/π 2. Exp. Math. 15, 83–89 (2006)
Guillera, J.: Hypergeometric identities for 10 extended Ramanujan type series. Ramanujan J. 15, 219–234 (2008)
Hardy, G.H.: Some formulae of Ramanujan. Proc. Lond. Math. Soc. 22(2), xii–xiii (1924)
Hardy, G.H.: Ramanujan. Cambridge University Press, Cambridge (1940); reprinted by Chelsea, New York (1960); reprinted by the American Mathematical Society, Providence (1999)
Hardy, G.H.: Collected Papers, vol. 4. Clarendon Press, Oxford (1969)
Ramanujan, S.: Modular equations and approximations to π. Quart. J. Math. (Oxford) 45, 350–372 (1914)
Ramanujan, S.: Collected Papers. Cambridge University Press, Cambridge (1927); reprinted by Chelsea, New York (1962); reprinted by the American Mathematical Society, Providence (2000)
Ramanujan, S.: Notebooks (2 volumes). Tata Institute of Fundamental Research, Bombay (1957)
Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi (1988)
Zudilin, W.: Ramanujan-type formulae and irrationality measures of certain multiples of π. Mat. Sb. 196, 51–66 (2005)
Zudilin, W.: Quadratic transformations and Guillera’s formulae for 1/π 2. Math. Zametki 81, 335–340 (2007) (Russian); Math. Notes 81, 297–301 (2007)
Zudilin, W.: Ramanujan-type formulae for 1/π: A second wind? In: Yui, N., Verrill, H., Doran, C.F. (eds.) Modular Forms and String Duality. Fields Institute Communications, vol. 54, pp. 179–188. American Mathematical Society & The Fields Institute for Research in Mathematical Sciences, Providence (2008)
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to George Andrews on the occasion of his 70-th birthday
N.D. Baruah research partially supported by BOYSCAST Fellowship grant SR/BY/M-03/05 from DST, Govt. of India.
B.C. Berndt research partially supported by NSA grant MSPF-03IG-124.
Rights and permissions
About this article
Cite this article
Baruah, N.D., Berndt, B.C. Eisenstein series and Ramanujan-type series for 1/π . Ramanujan J 23, 17–44 (2010). https://doi.org/10.1007/s11139-008-9155-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11139-008-9155-8
Keywords
- Eisenstein series
- Theta-functions
- Modular equations
Mathematics Subject Classification (2000)
- 33C05
- 33E05
- 11F11
- 11R29