Skip to main content
Log in

On the distribution of the longest run in number partitions

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We consider the distribution of the longest run of equal elements in number partitions (equivalently, the distribution of the largest gap between subsequent elements); in a recent paper, Mutafchiev proved that the distribution of this random variable (appropriately rescaled) converges weakly. The corresponding distribution function is closely related to the generating function for number partitions. In this paper, this problem is considered in more detail—we study the behavior at the tails (especially the case that the longest run is comparatively small) and extend the asymptotics for the distribution function to the entire interval of possible values. Additionally, we prove a local limit theorem within a suitable region, i.e. when the longest run attains its typical order n 1/2, and we observe another phase transition that occurs when the largest gap is of order n 1/4: there, the conditional probability that the longest run has length d, given that it is ≤d, jumps from 1 to 0. Asymptotics for the mean and variance follow immediately from our considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E.: The Theory of Partitions. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  2. Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory. Graduate Texts in Mathematics, vol. 41, 2nd edn. Springer, New York (1990)

    MATH  Google Scholar 

  3. Brennan, C., Knopfmacher, A., Wagner, S.: The distribution of ascents of size d or more in partitions of n. Comb. Probab. Comput. 17(4), 495–509 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Corteel, S., Pittel, B., Savage, C.D., Wilf, H.S.: On the multiplicity of parts in a random partition. Random Struct. Algorithms 14(2), 185–197 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Erdős, P., Lehner, J.: The distribution of the number of summands in the partitions of a positive integer. Duke Math. J. 8, 335–345 (1941)

    Article  MathSciNet  Google Scholar 

  6. Erdős, P., Szalay, M.: On the statistical theory of partitions. In: Topics in Classical Number Theory, vol. I, II, Budapest, 1981. Colloq. Math. Soc. János Bolyai, vol. 34, pp. 397–450. North-Holland, Amsterdam (1984)

    Google Scholar 

  7. Fristedt, B.: The structure of random partitions of large integers. Trans. Am. Math. Soc. 337(2), 703–735 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goh, W.M.Y., Schmutz, E.: The number of distinct part sizes in a random integer partition. J. Comb. Theory Ser. A 69(1), 149–158 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grabner, P.J., Knopfmacher, A.: Analysis of some new partition statistics. Ramanujan J. 12(3), 439–454 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hardy, G.H., Ramanujan, S.: Asymptotic formulæin combinatory analysis. In: Collected Papers of Srinivasa Ramanujan, p. 244. AMS Chelsea, Providence (2000). [Proc. Lond. Math. Soc. 16(2) (1917), Records for 1 March 1917]

    Google Scholar 

  11. Hua, L.K.: On the number of partitions of a number into unequal parts. Trans. Am. Math. Soc. 51, 194–201 (1942)

    Article  MATH  Google Scholar 

  12. Hwang, H.-K.: Limit theorems for the number of summands in integer partitions. J. Comb. Theory Ser. A 96(1), 89–126 (2001)

    Article  MATH  Google Scholar 

  13. Meinardus, G.: Asymptotische Aussagen über Partitionen. Math. Z. 59, 388–398 (1954)

    Article  MathSciNet  Google Scholar 

  14. Mutafchiev, L.R.: On the maximal multiplicity of parts in a random integer partition. Ramanujan J. 9(3), 305–316 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rademacher, H.: On the expansion of the partition function in a series. Ann. Math. 44(2), 416–422 (1943)

    Article  MathSciNet  Google Scholar 

  16. Szekeres, G.: An asymptotic formula in the theory of partitions. Quart. J. Math., Oxford Ser. 2(2), 85–108 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  17. Szekeres, G.: Some asymptotic formulae in the theory of partitions. II. Quart. J. Math., Oxford Ser. 4(2), 96–111 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  18. Szekeres, G.: Asymptotic distribution of the number and size of parts in unequal partitions. Bull. Aust. Math. Soc. 36(1), 89–97 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Szekeres, G.: Asymptotic distribution of partitions by number and size of parts. In: Number Theory, vol. I, Budapest, 1987. Colloq. Math. Soc. János Bolyai, vol. 51, pp. 527–538. North-Holland, Amsterdam (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, S. On the distribution of the longest run in number partitions. Ramanujan J 20, 189–206 (2009). https://doi.org/10.1007/s11139-008-9149-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-008-9149-6

Keywords

Mathematics Subject Classification (2000)

Navigation