Skip to main content
Log in

A new proof of the Ramanujan congruences for the partition function

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let p(n) denote the number of partitions of n. Recall Ramanujan’s three congruences for the partition function,

$$\begin{array}{rcl}p(5n+4)&\equiv&0\pmod{5},\\[6pt]p(7n+5)&\equiv&0\pmod{7},\\[6pt]p(11n+6)&\equiv&0\pmod{11}.\end{array}$$

These congruences have been proven via q-series identities, combinatorial arguments, and the theory of Hecke operators. We present a new proof which does not rely on any specialized identities or combinatorial constructions, nor does it necessitate introducing Hecke operators. Instead, our proof follows from simple congruences between the coefficients of modular forms, basic properties of Klein’s modular j-function, and the chain rule for differentiation. Furthermore, this proof naturally encompasses all three congruences in a single argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E.: The Theory of Partitions. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1998). Reprint of the 1976 original

    MATH  Google Scholar 

  2. Andrews, G.E., Garvan, F.G.: Dyson’s crank of a partition. Bull. Am. Math. Soc. 18(2), 167–171 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Apostol, T.: Modular Functions and Dirichlet Series in Number Theory, 2nd edn. Number 41 in Graduate Texts in Mathematics. Springer, Berlin (1990)

    MATH  Google Scholar 

  4. Atkin, A.O.L., Swinnerton-Dyer, P.: Some properties of partitions. Proc. Lond. Math. Soc. 3(4), 84–106 (1954)

    Article  MathSciNet  Google Scholar 

  5. Choie, Y., Kohnen, W., Ono, K.: Linear relations between modular form coefficients and non-ordinary primes. Bull. Lond. Math. Soc. 37(3), 335–341 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Euler, L.: Einleitung in die analysis des unendlichen. Teil 1. Springer, Berlin (1983). Reprint of the 1885 edition

    MATH  Google Scholar 

  7. Garvan, F., Kim, D., Stanton, D.: Cranks and t-cores. Invent. Math. 101(1), 1–17 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Springer, Berlin (1990)

    MATH  Google Scholar 

  9. Niven, I., Zuckerman, H.S.: An Introduction to the Theory of Numbers. Wiley, New York (1960)

    MATH  Google Scholar 

  10. Winquist, L.: An elementary proof of p(11m+6)≡0 mod 11. J. Comb. Theory 6, 56–59 (1969)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Lachterman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lachterman, S., Schayer, R. & Younger, B. A new proof of the Ramanujan congruences for the partition function. Ramanujan J 15, 197–204 (2008). https://doi.org/10.1007/s11139-007-9072-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-007-9072-2

Keywords

Mathematics Subject Classification (2000)

Navigation