Skip to main content
Log in

A new multivariable 6 ψ 6 summation formula

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

By multidimensional matrix inversion, combined with an A r extension of Jackson’s 8 φ 7 summation formula by Milne, a new multivariable 8 φ 7 summation is derived. By a polynomial argument this 8 φ 7 summation is transformed to another multivariable 8 φ 7 summation which, by taking a suitable limit, is reduced to a new multivariable extension of the nonterminating 6 φ 5 summation. The latter is then extended, by analytic continuation, to a new multivariable extension of Bailey’s very-well-poised 6 ψ 6 summation formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E.: Connection coefficient problems and partitions. In: Ray-Chaudhuri, D. (ed.) Proc. Symp. Pure Math., vol. 34, pp. 1–24. Am. Math. Soc., Providence (1979)

    Google Scholar 

  2. Andrews, G.E.: Bailey’s transform, lemma, chains and tree. In: Bustoz, J., Ismail, M.E.H., Suslov, S.K. (eds.) Special Functions 2000: Current Perspective and Future Directions. NATO Sci. Ser. II: Math. Phys. Chem., vol. 30, pp. 1–22. Kluwer, Dordrecht (2001)

    Google Scholar 

  3. Askey, R., Ismail, M.E.H.: The very well poised 6 ψ 6. Proc. Am. Math. Soc. 77, 218–222 (1979)

    Article  MathSciNet  Google Scholar 

  4. Bailey, W.N.: Series of hypergeometric type which are infinite in both directions. Quart. J. Math. (Oxford) 7, 105–115 (1936)

    Article  Google Scholar 

  5. Bhatnagar, G.: Inverse relations, generalized bibasic series, and their U(n) extensions. Doctoral dissertation, The Ohio State University (1995)

  6. Bhatnagar, G., Milne, S.C.: Generalized bibasic hypergeometric series, and their U(n) extensions. Adv. Math. 131, 188–252 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bressoud, D.M.: A matrix inverse. Proc. Am. Math. Soc. 88, 446–448 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bromwich, T.J., l’A.: An Introduction to the Theory of Infinite Series, 2nd edn. Macmillan, London (1949)

    Google Scholar 

  9. Coskun, H., Gustafson, R.A.: Well-poised Macdonald functions W λ and Jackson coefficients ω λ on BC n . Proceedings of the workshop on Jack, Hall–Littlewood and Macdonald polynomials. Contemp. Math. 417, 127–155 (2006)

    MathSciNet  Google Scholar 

  10. Frenkel, I.B., Turaev, V.G.: Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions. In: Arnold, V.I., Gelfand, I.M., Retakh, V.S., Smirnov, M. (eds.) The Arnold–Gelfand Mathematical Seminars, pp. 171–204. Birkhäuser, Boston (1997)

    Google Scholar 

  11. Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 96, Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  12. Gustafson, R.A.: Multilateral summation theorems for ordinary and basic hypergeometric series in U(n). SIAM J. Math. Anal. 18, 1576–1596 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gustafson, R.A.: The Macdonald identities for affine root systems of classical type and hypergeometric series very well-poised on semi-simple Lie algebras. In Thakare, N.K. (ed.) Ramanujan International Symposium on Analysis, Pune, India, December 26–28, 1987, pp. 187–224 (1989)

  14. Gustafson, R.A.: A summation theorem for hypergeometric series very-well-poised on G 2. SIAM J. Math. Anal. 21, 510–522 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Holman III, W.J., Biedenharn, L.C., Louck, J.D.: On hypergeometric series well-poised in SU(n). SIAM J. Math. Anal. 7, 529–541 (1976)

    Article  MathSciNet  Google Scholar 

  16. Ismail, M.E.H.: A simple proof of Ramanujan’s 1 ψ 1 sum. Proc. Am. Math. Soc. 63, 185–186 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ito, M.: A product formula for Jackson integral associated with the root system F 4. Ramanujan J. 6, 279–293 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ito, M.: Symmetry classification for Jackson integrals associated with the root system BC n . Compos. Math. 136, 209–216 (2003)

    Article  MATH  Google Scholar 

  19. Jackson, F.H.: Summation of q-hypergeometric series. Messenger Math. 57, 101–112 (1921)

    Google Scholar 

  20. Krattenthaler, C.: A new matrix inverse. Proc. Am. Math. Soc. 124, 47–59 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Krattenthaler, C., Schlosser, M.: A new multidimensional matrix inverse with applications to multiple q-series. Discrete Math. 204, 249–279 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lassalle, M., Schlosser, M.: Inversion of the Pieri formula for Macdonald polynomials. Adv. Math. 202, 289–325 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lilly, G.M., Milne, S.C.: The C l Bailey transform and Bailey lemma. Constr. Approx. 9, 473–500 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Milne, S.C.: Multiple q-series and U(n) generalizations of Ramanujan’s 1 ψ 1 sum. In: Andrews, G.E. et al. (eds.) Ramanujan Revisited, pp. 473–524. Academic Press, New York (1988)

    Google Scholar 

  25. Milne, S.C.: Balanced 3 φ 2 summation theorems for U(n) basic hypergeometric series. Adv. Math. 131, 93–187 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Milne, S.C.: Transformations of U(n+1) multiple basic hypergeometric series. In: Kirillov, A.N., Tsuchiya, A., Umemura, H. (eds.) Physics and Combinatorics, Proceedings of the Nagoya 1999 International Workshop, Nagoya University, Japan, 23–27 August 1999, pp. 201–243. World Scientific, Singapore (2001)

    Google Scholar 

  27. Milne, S.C., Lilly, G.M.: Consequences of the A l and C l Bailey transform and Bailey lemma. Discrete Math. 139, 319–346 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rains, E.M.: BC n -symmetric abelian functions. Duke Math. J. 135, 99–180 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rosengren, H.: Elliptic hypergeometric series on root systems. Adv. Math. 181, 417–447 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rosengren, H., Schlosser, M.: Multidimensional matrix inversions and elliptic hypergeometric series on root systems (in preparation)

  31. Schlosser, M.: Multidimensional matrix inversions and A r and D r basic hypergeometric series. Ramanujan J. 1, 243–274 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Schlosser, M.: Some new applications of matrix inversions in A r . Ramanujan J. 3, 405–461 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  33. Schlosser, M.: Summation theorems for multidimensional basic hypergeometric series by determinant evaluations. Discrete Math. 210, 151–169 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. van Diejen, J.F.: On certain multiple Bailey, Rogers and Dougall type summation formulas. Publ. RIMS (Kyoto Univ.) 33, 483–508 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schlosser.

Additional information

Partly supported by FWF Austrian Science Fund grants P17563-N13, and S9607 (the second is part of the Austrian National Research Network “Analytic Combinatorics and Probabilistic Number Theory”).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlosser, M. A new multivariable 6 ψ 6 summation formula. Ramanujan J 17, 305–319 (2008). https://doi.org/10.1007/s11139-007-9017-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-007-9017-9

Keywords

Mathematics Subject Classification (2000)

Navigation