Skip to main content
Log in

Telescoping partial fractions decompositions, the little q-Jacobi functions of complex order, and the nonterminating q-Saalschütz sum

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We use telescoping partial fractions decompositions to give new proofs of the orthogonality property and the normalization relation for the little q-Jacobi polynomials, and the q-Saalschütz sum. In [20], we followed the development [19] of Schur functions for partitions with complex parts, and we showed that there exist natural little q-Jacobi functions of complex order which satisfy extensions of the orthogonality property and normalization relation of the little q-Jacobi polynomials, and that these two results follow from and together imply the nonterminating form of the q-Saalschütz sum. Writing the q-Pochhammer symbol of complex order as a ratio of infinite products in the usual way, we obtain new telescoping partial fractions decomposition proofs of our results [20] for the little q-Jacobi functions of complex order. We give several new proofs of the q-Saalschütz sum and its nonterminating form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E.: On Ramanujan’s summation of 1 ψ1 (a,b;z). Proc. Amer. Math. Soc. 22, 552–553 (1969)

    Article  MathSciNet  Google Scholar 

  2. Andrews, G.E.: The theory of partitions. In: Rota, G.-C. (ed.) Encyclopedia of Mathematics and Its Applications, Vol. 2. Addison-Wesley, Reading, Mass., (1976); reprinted by Cambridge Univ. Press, Cambridge (1985)

  3. Andrews, G.E., Askey, R.: Enumeration of partitions: the role of Eulerian series and q-orthogonal polynomials. In: Aigner, M. (ed.) Higher Combinatorics, pp. 3–26. Reidel, Boston (1977)

    Google Scholar 

  4. Andrews, G.E., Askey, R., Roy, R.: Special functions. Cambridge Univ. Press, Cambridge (1999)

    MATH  Google Scholar 

  5. Andrews, G.E., Bressoud, D.M.: Identities in combinatorics III: further aspects of ordered set sorting. Discrete Math. 49, 223–236 (1984)

    Article  MathSciNet  Google Scholar 

  6. Askey, R.: The q-gamma and q-beta functions. Applicable Anal. 8, 125–141 (1978/1979)

    MathSciNet  Google Scholar 

  7. Askey, R., Ismail, M.E.-H.: The very well poised 6 ψ6. Proc. Amer. Math. Soc. 77, 218–222 (1979)

    Article  MathSciNet  Google Scholar 

  8. Bromwich, T.J.I’A.: An introduction to the theory of infinite series. 2nd ed., rev., Macmillan, London (1965)

    Google Scholar 

  9. Burchnall, J.L., Latkin, A.: The theorems of Saalschütz and Dougall. Quart. J. Math., Oxford Ser. (2) 1, 161–164 (1950)

    Google Scholar 

  10. Chan, S.H.: A short proof of Ramanujan’s famous 1 ψ1 summation formula. J. Approx. Theory 132, 149–153 (2005)

    Article  MathSciNet  Google Scholar 

  11. Foata, D.: Une démonstration combinatoire de l’identité de Pfaff-Saalschütz. C.R. Acad. Sci. Paris Sér. I Math. 297, 221–224 (1983)

    MathSciNet  Google Scholar 

  12. Gasper, G., Rahman, M.: Basic hypergeometric series. Cambridge Univ. Press, Cambridge (1990)

    MATH  Google Scholar 

  13. Gessel, I., Stanton, D.: Short proofs of Saalschütz’s and Dixon’s theorems. J. Combin. Theory Ser. A 38, 87–90 (1985)

    Article  MathSciNet  Google Scholar 

  14. Goulden, I.P.: A bijective proof of the q-Saalschütz theorem. Discrete Math. 57, 39–44 (1985)

    Article  MathSciNet  Google Scholar 

  15. Hahn, W.: Über Polynome, die gleichzeitig zwei verschieclen Orthogonalsyste-men angehoren. Math. Nachr. 2, 263–278 (1949)

    MathSciNet  Google Scholar 

  16. Ismail, M.E.-H.: A simple proof of Ramanujan’s 1 ψ1 summation formula. Proc. Amer. Math. Soc. 63, 185–186 (1977)

    Article  MathSciNet  Google Scholar 

  17. Jackson, F.H.: Transformations of q-series. Messenger Math. 39, 145–153 (1910)

    Google Scholar 

  18. Kadell, K.W.J.: A probabilistic proof of the 1 ψ1 summation formula. SIAM J. Math. Anal. 18, 1539–1548 (1987)

    Article  MathSciNet  Google Scholar 

  19. Kadell, K.W.J.: The Schur functions for partitions with complex parts. Contemp. Math. 254, 247–270 (2000)

    MathSciNet  Google Scholar 

  20. Kadell, K.W.J.: The little q-Jacobi functions of complex order. In: Ismail, M.E.H., Koelink, E. (eds.) Theory and Applications of Special Functions, Developments in Mathematics, Vol. 13, pp. 301–338. Springer, New York (2005)

    Chapter  Google Scholar 

  21. Pfaff, J.F.: Observationes analyticae ad L. Euler Institutiones Calculi Inte-gralis. Vol. IV, Supplem. II et IV, Historia de (1793). Nova Acta Acad. Sci. Petropolitanae 11, 38–57 (1797)

    Google Scholar 

  22. Saalschütz, L.: Eine summationsformel. Zeitschr. Math. Phys. 35, 186–188 (1890)

    Google Scholar 

  23. Sears, D.B.: Transformations of basic hyper geometric functions of special type. Proc. London Math. Soc. 52(2), 467–483 (1951)

    MathSciNet  Google Scholar 

  24. Székely, L.A.: Common origin of cubic binomial identities; a generalization of Surányi’s proof of Le Jen Shoe’s formula. J. Combin. Theory Ser. A 40, 171–174 (1985)

    Article  MathSciNet  Google Scholar 

  25. Zeilberger, D.: A q-Foata proof of the q-Saalschütz identity. European J. Combin. 8, 461–463 (1987)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin W. J. Kadell.

Additional information

For our friends Dick and Liz

2000 Mathematics Subject Classification Primary—42C05; Secondary—33C45, 33C47

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadell, K.W.J. Telescoping partial fractions decompositions, the little q-Jacobi functions of complex order, and the nonterminating q-Saalschütz sum. Ramanujan J 13, 449–469 (2007). https://doi.org/10.1007/s11139-006-0261-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-006-0261-1

Keywords

Navigation