Skip to main content
Log in

Spin Leonard pairs

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let \({\mathbb K}\) denote a field, and let V denote a vector space over \({\mathbb K}\) of finite positive dimension. A pair A, A* of linear operators on V is said to be a Leonard pair on V whenever for each B∈{A, A*}, there exists a basis of V with respect to which the matrix representing B is diagonal and the matrix representing the other member of the pair is irreducible tridiagonal. A Leonard pair A, A* on V is said to be a spin Leonard pair whenever there exist invertible linear operators U, U* on V such that UA = A U, U*A* = A*U*, and UA* U −1 = U*−1 AU*. In this case, we refer to U, U* as a Boltzmann pair for A, A*. We characterize the spin Leonard pairs. This characterization involves explicit formulas for the entries of the matrices that represent A and A* with respect to a particular basis. The formulas are expressed in terms of four algebraically independent parameters. We describe all Boltzmann pairs for a spin Leonard pair in terms of these parameters. We then describe all spin Leonard pairs associated with a given Boltzmann pair. We also describe the relationship between spin Leonard pairs and modular Leonard triples. We note a modular group action on each isomorphism class of spin Leonard pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bannai, E., Bannai, Et., Jaeger, F.: On spin models, modular invariance, and duality. J. Alg. Combin. 6, 203–228 (1997)

    Article  MathSciNet  Google Scholar 

  2. Bannai, E., Ito, T.: Algebraic Combinatorics I, Benjamin/Cummings, Menlo Park (1984)

    MATH  Google Scholar 

  3. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, New York (1989)

    MATH  Google Scholar 

  4. Caughman, J.S., Wolff, N.: The Terwilliger algebra of a distance-regular graph that supports a spin model. J. Algebraic Combin. 21(3), 289–310 (2005)

    Article  MathSciNet  Google Scholar 

  5. Curtin, B.: Distance-regular graphs which support a spin model are thin. Discr. Math. 197–198, 205–216 (1999)

    MathSciNet  Google Scholar 

  6. Curtin, B.: Modular Leonard triples, preprint

  7. Curtin, B., Nomura, K.: Some formulas for spin models on distance-regular graphs. J. Combin. Theory Ser. B 75, 206–236 (1999)

    Article  MathSciNet  Google Scholar 

  8. Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge (1990)

  9. Ito, T., Tanabe, K., Terwilliger, P.: Some algebra related to P- and Q-polynomial association schemes. Codes and association schemes (Piscataway, NJ, 1999), pp. 167–192. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 56, Amer. Math. Soc., Providence, RI (2001)

  10. Jaeger, F.: Towards a classification of spin models in terms of association schemes. Advanced Studies in Pure Math. 24, 197–225 (1996)

    MathSciNet  Google Scholar 

  11. Jones, V.F.R.: On knot invariants related to some statistical mechanical models. Pac. J. Math. 137, 311–224 (1989)

    Google Scholar 

  12. Nomura, K.: An algebra associated with a spin model. J. Alg. Combin. 6, 53–58 (1997)

    Article  MathSciNet  Google Scholar 

  13. Rotman, J.J.: Advanced Modern Algebra. Prentice Hall, Saddle River NJ (2002)

    MATH  Google Scholar 

  14. Terwilliger, P.: The subconstituent algebra of an association scheme. J. Alg. Combin. Part I: 1, 363–388 (1992); Part II: 2, 73–103 (1993), Part III: 2, 177–210 (1993)

    Google Scholar 

  15. Terwilliger, P.: Introduction to Leonard pairs. J. Comput. Appl. Math. 153, 463–475 (2003)

    Article  MathSciNet  Google Scholar 

  16. Terwilliger, P.: Leonard pairs from 24 points of view. Rocky Mountain Journal of Mathematics, 32, 827–888 (2002)

    Article  MathSciNet  Google Scholar 

  17. Terwilliger, P.: Two relations that generalize the quantum Serre relations and the Dolan-Grady relations, in Physics and combinatorics 1999 (Nagoya) pp. 377–398. World Sci. Publishing, River Edge, NJ (2001)

    Google Scholar 

  18. Terwilliger, P.: Two linear transformations each tridiagonal with respect to an eigenbasis of the other. Linear Algebra Appl. 330, 149–203 (2001)

    Article  MathSciNet  Google Scholar 

  19. Terwilliger, P.: Two linear transformations each tridiagonal with respect to an eigenbasis of the other; the TD-D canonical form and the LB-UB canonical form. J. Algebra 291(1), 1–45 (2005)

    Article  MathSciNet  Google Scholar 

  20. Terwilliger, P.: Two linear transformations each tridiagonal with respect to an eigenbasis of the other: comments on the split decomposition. J. Comput. Appl. Math. 178, 437–452 (2005)

    Article  MathSciNet  Google Scholar 

  21. Terwilliger, P.: Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array. Des. Codes Cryptogr. 34, 307–332 (2005)

    Article  MathSciNet  Google Scholar 

  22. Terwilliger, P.: Leonard pairs and the q-Racah polynomials. Linear Algebra Appl. 387, 235–276 (2004)

    Article  MathSciNet  Google Scholar 

  23. Vidunas, R., Terwilliger, P.: Leonard pairs and Askey-Wilson relations. J. Algebra Appl. 3, 411–426 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Curtin.

Additional information

Dedicated to Richard Askey on the occasion of his 70th birthday.

2000 Mathematics Subject Classification Primary—05E35, 33C45, 33D45, 20C99.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtin, B. Spin Leonard pairs. Ramanujan J 13, 319–332 (2007). https://doi.org/10.1007/s11139-006-0255-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-006-0255-z

Keywords

Navigation