Hyperbolic uniformization of Fermat curves


The ground-breaking research on the uniformization of curves was conducted at the beginning of the last century. Nevertheless, there are few examples in the literature of algebraic curves for which an explicit uniformization is known. In this article we obtain an explicit uniformization of the Fermat curves F N , for each \(N\geq 4\). The results presented here are based in part on an earlier study of the second author [6] in which each Riemann surface F N () was described as a quotient of the complex disk by a Fuchsian group Γ.

This is a preview of subscription content, log in to check access.


  1. 1.

    Alsina. M., Bayer, P.: Quaternion orders, quadratic forms and shimura curves. CRM Monograph Series 22, AMS (2004)

  2. 2.

    Bayer, P.: Uniformization of certain Shimura curves. In: T. Crespo and Z. Hajto (eds.), Differential Galois Theory, Banach Center Publications 58, 13–26 (2002)

  3. 3.

    Bayer, P., Guàrdia, J.: A la recerca de pi, Butlletí de la Societat Catalana de Matemàtiques 17, 7–19 (2002)

    Google Scholar 

  4. 4.

    Farkas, H., Kra, I.: Riemann surfaces. Graduate Texts in Mathematics 71, Springer, New York, NY (1992)

  5. 5.

    Ford, L.: Automorphic functions, (Chelsea, 1951)

  6. 6.

    Guàrdia, J.: A fundamental domain for the Fermat curves and their quotients. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales 94, 391–396 (2000)

    MATH  Google Scholar 

  7. 7.

    Hai Lim, C.: The Jacobian of a cyclic quotient of the Fermat curve. Nagoya Math. J. 125, 73–92 (1992)

    MATH  MathSciNet  Google Scholar 

  8. 8.

    Lang, S.: Introduction to algebraic and abelian functions. Graduate Text in Mathematics 89, (Springer, 1982)

  9. 9.

    Gross, B.: On the periods of abelian integrals and a formula of Chowla and Selberg. Inventiones math. 45, 193–211 (1978)

    MATH  Article  Google Scholar 

  10. 10.

    Lehner, J.: Discontinuous groups and automorphic functions. AMS Mathematical Surveys 8, Amer. Math. Society (1964)

  11. 11.

    Magnus, W.: Noneuclidean tesselations and their groups, Academic Press, 1974

  12. 12.

    Nehari, Z.: Conformal mapping. Dover Publications (1952)

  13. 13.

    Rohrlich, D.: The periods of the Fermat curve, appendix to Gross, B., On the periods of abelian integrals and a formula of Chowla and Selberg. Inventiones Math. 45, 193–211 (1978)

    MATH  MathSciNet  Article  Google Scholar 

  14. 14.

    Sansone, G., Gerretsen, J.: Lectures on the theory of functions of a complex variable. Wolters-Noordhoff Publishing (1969)

  15. 15.

    Schwarz, H. A.: Ueber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt. J. reine u. angew. Mathematik 75, 292–335 (1873)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. Bayer.

Additional information

This work was partially supported by MCYT BFM2000-0627 and BMF2003-01898.

2000 Mathematics Subject Classification Primary—11F03, 11F06; Secondary—11F30

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bayer, P., Guàrdia, J. Hyperbolic uniformization of Fermat curves. Ramanujan J 12, 207–223 (2006). https://doi.org/10.1007/s11139-006-0074-2

Download citation


  • Hyperbolic uniformization
  • Fundamental domains
  • Fermat curves