The Ramanujan Journal

, Volume 12, Issue 2, pp 207–223 | Cite as

Hyperbolic uniformization of Fermat curves

  • P. Bayer
  • J. Guàrdia


The ground-breaking research on the uniformization of curves was conducted at the beginning of the last century. Nevertheless, there are few examples in the literature of algebraic curves for which an explicit uniformization is known. In this article we obtain an explicit uniformization of the Fermat curves F N , for each \(N\geq 4\). The results presented here are based in part on an earlier study of the second author [6] in which each Riemann surface F N () was described as a quotient of the complex disk by a Fuchsian group Γ.


Hyperbolic uniformization Fundamental domains Fermat curves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alsina. M., Bayer, P.: Quaternion orders, quadratic forms and shimura curves. CRM Monograph Series 22, AMS (2004)Google Scholar
  2. 2.
    Bayer, P.: Uniformization of certain Shimura curves. In: T. Crespo and Z. Hajto (eds.), Differential Galois Theory, Banach Center Publications 58, 13–26 (2002)Google Scholar
  3. 3.
    Bayer, P., Guàrdia, J.: A la recerca de pi, Butlletí de la Societat Catalana de Matemàtiques 17, 7–19 (2002)Google Scholar
  4. 4.
    Farkas, H., Kra, I.: Riemann surfaces. Graduate Texts in Mathematics 71, Springer, New York, NY (1992)Google Scholar
  5. 5.
    Ford, L.: Automorphic functions, (Chelsea, 1951)Google Scholar
  6. 6.
    Guàrdia, J.: A fundamental domain for the Fermat curves and their quotients. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales 94, 391–396 (2000)zbMATHGoogle Scholar
  7. 7.
    Hai Lim, C.: The Jacobian of a cyclic quotient of the Fermat curve. Nagoya Math. J. 125, 73–92 (1992)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Lang, S.: Introduction to algebraic and abelian functions. Graduate Text in Mathematics 89, (Springer, 1982)Google Scholar
  9. 9.
    Gross, B.: On the periods of abelian integrals and a formula of Chowla and Selberg. Inventiones math. 45, 193–211 (1978)zbMATHCrossRefGoogle Scholar
  10. 10.
    Lehner, J.: Discontinuous groups and automorphic functions. AMS Mathematical Surveys 8, Amer. Math. Society (1964)Google Scholar
  11. 11.
    Magnus, W.: Noneuclidean tesselations and their groups, Academic Press, 1974Google Scholar
  12. 12.
    Nehari, Z.: Conformal mapping. Dover Publications (1952)Google Scholar
  13. 13.
    Rohrlich, D.: The periods of the Fermat curve, appendix to Gross, B., On the periods of abelian integrals and a formula of Chowla and Selberg. Inventiones Math. 45, 193–211 (1978)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Sansone, G., Gerretsen, J.: Lectures on the theory of functions of a complex variable. Wolters-Noordhoff Publishing (1969)Google Scholar
  15. 15.
    Schwarz, H. A.: Ueber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt. J. reine u. angew. Mathematik 75, 292–335 (1873)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Facultat de MatemàtiquesUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departament de Matemàtica Aplicada IVEscola Politècnica Superior d’Enginyeria de Vilanova i la GeltrúVilanova i la GeltrúSpain

Personalised recommendations