Skip to main content
Log in

On the Entropy of Spanning Trees on a Large Triangular Lattice

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

The double integral representing the entropy Stri of spanning trees on a large triangular lattice is evaluated using two different methods, one algebraic and one graphical. Both methods lead to the same result

$$ S_{\rm tri} = (4 \pi^2)^{-1} \int_{0}^{2 \pi} d \theta \int^{2 \pi}_{0}d \phi \ln {[}6-2 \cos \theta-2 \cos \phi-2 \cos (\theta + \phi){]} = (3 \sqrt{3}/\pi)(1-5^{-2} + 7^{-2} - 11^{-2} + 13^{-2}-\ldots).$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.L. Biggs, Algebraic Graph Theory, Cambridge University Press (second edition), Cambridge, 1993.

    Google Scholar 

  2. W.J. Tzeng and F.Y. Wu, “Spanning trees on hypercubic lattices and nonorientable surfaces,” Lett. Appl. Math. 13 (2000), 19–25.

    MathSciNet  Google Scholar 

  3. R. Shrock and F.Y. Wu, “Spanning trees on graphs and lattices in d dimensions,” J. Phys. A: Math. Gen. 33 (2000), 3881–3902.

    Article  MathSciNet  Google Scholar 

  4. H.N.V. Temperley, in Combinatorics: Proc. Oxford Conference on Combinatorial Mathematics (D.J.A. Welsh and D.R. Woodall, eds.), Institute of Mathematics and Its Applications, Oxford, 1972, pp. 356–357.

  5. P.W. Kasteleyn, “The statistics of dimers on a lattice,” Physica 27 (1961), 1209–1225.

    Article  ISI  Google Scholar 

  6. M, E. Fisher, “Statistical mechanics of dimers on a plane lattice,” Phys. Rev. 124 (1961), 1664-1672.

    MATH  MathSciNet  Google Scholar 

  7. F.Y. Wu, “Number of spanning trees on a lattice,” J. Phys. A: Math. Gen. 10 (1977), L113–115.

    Article  Google Scholar 

  8. R.J. Baxter, “F model on a triangular lattice,” J. Math. Phys. 10 (1969), 1211–1216.

    Article  Google Scholar 

  9. L. Lewin, Dilogarithms and Associated Functions, Macdonald, London, 1958.

  10. H.N.V. Temperley and E.H. Lieb, “Relations between the ‘Percolation’ and ‘Colouring’ problem and other graph-theoretical problems associated with regular planar lattices: Some exact results for the ‘Percolation’ problem,” Proc. Roy. Soc. London A. 322 (1971), 251–280.

    Google Scholar 

  11. R.J. Baxter, S.B. Kelland, and F.Y. Wu, “Equivalence of the potts model or Whitney polynomial with an ice-type model,” J. Phys. A: Math. Gen. 9 (1976), 397–406.

    Article  Google Scholar 

  12. F.Y. Wu, “The Potts model,” Rev. Mod. Phys. 54 (1982), 235–268.

    Article  Google Scholar 

  13. C.M. Fortuin and P.W. Kasteleyn, “On the random-cluster model, I. Introduction and relation to other models,” Physica, 57 (1972), 536–406.

    Article  ISI  MathSciNet  Google Scholar 

  14. C. Fan and F.Y. Wu, “General lattice model of phase transitions,” Phys. Rev. B 2 (1970), 723–733.

    Article  Google Scholar 

  15. C.K. Lin, “Equivalence of the 8-vertex model on a kagome lattice with the 32-vertex model on a triangular lattice,” J. Phys. A: Math. Gen. 9 (1976), L183–186.

    Google Scholar 

  16. R.J. Baxter, H.N, V. Temperley, and S.E. Ashley, “Triangular Potts model at its transition temperature, and related models, Proc. Roy. Soc. London A. 358 (1978), 535–559.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Glasser.

Additional information

2000 Mathematics Subject Classification: Primary—05A16, 33B30, 82B20

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glasser, M.L., Wu, F.Y. On the Entropy of Spanning Trees on a Large Triangular Lattice. Ramanujan J 10, 205–214 (2005). https://doi.org/10.1007/s11139-005-4847-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-005-4847-9

Keywords

Navigation