Skip to main content

Advertisement

Log in

Quality of life in postmenopausal women with osteoporosis and osteopenia: associations with bone microarchitecture and nutritional status

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Purpose

Primary aim of the study was to investigate the status of different health-related quality of life (HRQoL) domains in postmenopausal women with osteoporosis and osteopenia, and to explore possible associations with bone microarchitecture and nutritional status.

Methods

This was a single-center cross-sectional study that included 232 postmenopausal women, from which they were divided into three groups—osteoporosis (OP, N = 63), osteopenia (OPIA, N = 123), and control group (N = 46). Detailed medical history data and anthropometric measurements were taken from all women. Bone structure parameters were taken with DXA device, with additional analysis of bone microarchitecture status with Trabecular Bone Score (TBS). Nutritional status was assessed with Mini Nutritional Assessment (MNA) questionnaire, and HRQoL with Medical Outcomes Study Short Form-36 (SF-36) questionnaire.

Results

Nutrition evaluation analysis have shown that patients in OP group had significantly lower values of MNA score compared to the OPIA group and control group (P = 0.005). Furthermore, a significant positive correlation was found between all of the SF-36 domains and MNA scores, while significant positive correlation was found between TBS values and Physical functioning (P < 0.001), Bodily pain (P = 0.027), Social functioning (P = 0.029), and Vitality domains (P = 0.041) in total investigated population. Further analyses were performed only in OP and OPIA groups, and TBS score showed significant positive correlation with Physical functioning (r = 0.248, P < 0.001) and Bodily pain domains as well (r = 0.180, P = 0.014), while MNA score positively correlated with each of the SF-36 domains. Multiple regression models have shown that MNA score retained significant association with each SF-36 domains, and TBS value with Physical functioning (P = 0.003), Social functioning (P = 0.012), and Vitality domains (P = 0.014).

Conclusion

This study highlights the associations that TBS has with some domains of HRQoL in postmenopausal women with osteoporosis and osteopenia. Moreover, nutritional status could play a role in the complex interplay between TBS and HRQoL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author. The data are not publicly available due to ethical restrictions.

References

  1. Compston, J. E., McClung, M. R., & Leslie, W. D. (2019). Osteoporosis. Lancet (London, England), 393(10169), 364–376. https://doi.org/10.1016/S0140-6736(18)32112-3

    Article  CAS  PubMed  Google Scholar 

  2. Jackson, R. D., & Mysiw, W. J. (2014). Insights into the epidemiology of postmenopausal osteoporosis: The Women’s Health Initiative. Seminars in Reproductive Medicine, 32(6), 454–462. https://doi.org/10.1055/s-0034-1384629

    Article  PubMed  Google Scholar 

  3. Kanis, J. A., Norton, N., Harvey, N. C., Jacobson, T., Johansson, H., Lorentzon, M., McCloskey, E. V., Willers, C., & Borgström, F. (2021). SCOPE 2021: A new scorecard for osteoporosis in Europe. Archives of Osteoporosis, 16(1), 82. https://doi.org/10.1007/s11657-020-00871-9

    Article  PubMed  PubMed Central  Google Scholar 

  4. Weitzmann, M. N., & Pacifici, R. (2006). Estrogen deficiency and bone loss: An inflammatory tale. The Journal of Clinical Investigation, 116(5), 1186–1194. https://doi.org/10.1172/JCI28550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eghbali-Fatourechi, G., Khosla, S., Sanyal, A., Boyle, W. J., Lacey, D. L., & Riggs, B. L. (2003). Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. The Journal of Clinical Investigation, 111(8), 1221–1230. https://doi.org/10.1172/JCI17215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Curtis, E. M., van der Velde, R., Moon, R. J., van den Bergh, J. P., Geusens, P., de Vries, F., van Staa, T. P., Cooper, C., & Harvey, N. C. (2016). Epidemiology of fractures in the United Kingdom 1988–2012: Variation with age, sex, geography, ethnicity and socioeconomic status. Bone, 87, 19–26. https://doi.org/10.1016/j.bone.2016.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  7. Varacallo, M., Seaman, T. J., Jandu, J. S., & Pizzutillo, P. (2022). Osteopenia. StatPearls Publishing.

    Google Scholar 

  8. Lems, W. F., Raterman, H. G., van den Bergh, J. P., Bijlsma, H. W., Valk, N. K., Zillikens, M. C., & Geusens, P. (2011). Osteopenia: A diagnostic and therapeutic challenge. Current Osteoporosis Reports, 9(3), 167–172. https://doi.org/10.1007/s11914-011-0062-3

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pasco, J. A., Seeman, E., Henry, M. J., Merriman, E. N., Nicholson, G. C., & Kotowicz, M. A. (2006). The population burden of fractures originates in women with osteopenia, not osteoporosis. Osteoporosis International, 17(9), 1404–1409. https://doi.org/10.1007/s00198-006-0135-9

    Article  CAS  PubMed  Google Scholar 

  10. Link, T. M., & Heilmeier, U. (2016). Bone quality-beyond bone mineral density. Semin Musculoskelet Radiol, 20, 269–278. https://doi.org/10.1055/s-0036-1592365

    Article  PubMed  Google Scholar 

  11. Link, T. M., & Heilmeier, U. (2016). Bone quality-beyond bone mineral density. Seminars in Musculoskeletal Radiology, 20(3), 269–278. https://doi.org/10.1055/s-0036-1592365

    Article  PubMed  Google Scholar 

  12. Allo Miguel, G., Serraclara Plá, A., Partida Muñoz, M. L., Martínez Díaz-Guerra, G., & Hawkins, F. (2016). Seven years of follow up of trabecular bone score, bone mineral density, body composition and quality of life in adults with growth hormone deficiency treated with rhGH replacement in a single center. Therapeutic Advances in Endocrinology and Metabolism, 7(3), 93–100. https://doi.org/10.1177/2042018816643908

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shevroja, E., Lamy, O., Kohlmeier, L., Koromani, F., Rivadeneira, F., & Hans, D. (2017). Use of trabecular bone score (TBS) as a complementary approach to dual-energy x-ray absorptiometry (DXA) for fracture risk assessment in clinical practice. Journal of Clinical Densitometry, 20(3), 334–345. https://doi.org/10.1016/j.jocd.2017.06.019

    Article  PubMed  Google Scholar 

  14. Zhu, K., & Prince, R. L. (2015). Lifestyle and Osteoporosis. Current Osteoporosis Reports, 13(1), 52–59. https://doi.org/10.1007/s11914-014-0248-6

    Article  PubMed  Google Scholar 

  15. Pouresmaeili, F., Kamalidehghan, B., Kamarehei, M., & Goh, Y. M. (2018). A comprehensive overview on osteoporosis and its risk factors. Therapeutics and Clinical Risk Management, 14, 2029–2049. https://doi.org/10.2147/TCRM.S138000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eastell, R., O’Neill, T. W., Hofbauer, L. C., Langdahl, B., Reid, I. R., Gold, D. T., & Cummings, S. R. (2016). Postmenopausal osteoporosis. Nature Reviews. Disease Primers, 2, 16069. https://doi.org/10.1038/nrdp.2016.69

    Article  PubMed  Google Scholar 

  17. Dogu, B., Sirzai, H., Usen, A., Yilmaz, F., & Kuran, B. (2015). Comparison of body composition, nutritional status, functional status, and quality of life between osteoporotic and osteopenic postmenopausal women. Medicina (Kaunas, Lithuania), 51(3), 173–179. https://doi.org/10.1016/j.medici.2015.05.003

    Article  PubMed  Google Scholar 

  18. Rizzoli, R., Bischoff-Ferrari, H., Dawson-Hughes, B., & Weaver, C. (2014). Nutrition and bone health in women after the menopause. Women’s health (London, England), 10(6), 599–608. https://doi.org/10.2217/whe.14.40

    Article  CAS  PubMed  Google Scholar 

  19. Stanghelle, B., Bentzen, H., Giangregorio, L., Pripp, A. H., & Bergland, A. (2019). Associations between health-related quality of life, physical function and pain in older women with osteoporosis and vertebral fracture. BMC geriatrics, 19(1), 298. https://doi.org/10.1186/s12877-019-1268-y

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lips, P., & van Schoor, N. M. (2005). Quality of life in patients with osteoporosis. Osteoporosis International, 16(5), 447–455. https://doi.org/10.1007/s00198-004-1762-7

    Article  PubMed  Google Scholar 

  21. Sözen, T., Özışık, L., & Başaran, N. Ç. (2017). An overview and management of osteoporosis. European Journal of Rheumatology, 4(1), 46–56. https://doi.org/10.5152/eurjrheum.2016.048

    Article  PubMed  Google Scholar 

  22. Kashfi, S. S., Abdollahi, G., Hassanzadeh, J., Mokarami, H., & Khani Jeihooni, A. (2022). The relationship between osteoporosis and depression. Scientific Reports, 12(1), 11177. https://doi.org/10.1038/s41598-022-15248-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh, N., Kumar, D., Yadav, G., Srivastava, M. K., Mishra, S. R., Gupta, A. K., Jauhari, S., & Roy, M. S. (2020). Comparison of quality of life and bone mass density among postmenopausal women: a cross-sectional study. Journal of Mid-Life Health, 11(4), 224–230. https://doi.org/10.4103/jmh.JMH_107_20

    Article  PubMed  Google Scholar 

  24. Silva, B. C., & Leslie, W. D. (2017). Trabecular bone score: A new DXA-derived measurement for fracture risk assessment. Endocrinology and Metabolism Clinics of North America, 46(1), 153–180. https://doi.org/10.1016/j.ecl.2016.09.005

    Article  PubMed  Google Scholar 

  25. Kanis, J. A., McCloskey, E. V., Johansson, H., Oden, A., Melton, L. J., 3rd., & Khaltaev, N. (2008). A reference standard for the description of osteoporosis. Bone, 42(3), 467–475. https://doi.org/10.1016/j.bone.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  26. Bone Densitometry System User Guide. (assessed 2023, August 14th). Hologic. https://www.hologic.com/file/43586/download?token=Z5Aws4Xy

  27. Hans, D., Barthe, N., Boutroy, S., Pothuaud, L., Winzenrieth, R., & Krieg, M. A. (2011). Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: An experimental study on human cadaver vertebrae. Journal of Clinical Densitometry, 14(3), 302–312. https://doi.org/10.1016/j.jocd.2011.05.005

    Article  PubMed  Google Scholar 

  28. Hans, D., Goertzen, A. L., Krieg, M. A., & Leslie, W. D. (2011). Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: The Manitoba study. Journal of Bone and Mineral Research, 26(11), 2762–2769. https://doi.org/10.1002/jbmr.499

    Article  PubMed  Google Scholar 

  29. Silva, B. C., Leslie, W. D., Resch, H., Lamy, O., Lesnyak, O., Binkley, N., McCloskey, E. V., Kanis, J. A., & Bilezikian, J. P. (2014). Trabecular bone score: A noninvasive analytical method based upon the DXA image. Journal of Bone and Mineral Research, 29(3), 518–530. https://doi.org/10.1002/jbmr.2176

    Article  PubMed  Google Scholar 

  30. Martineau, P., & Leslie, W. D. (2018). The utility and limitations of using trabecular bone score with FRAX. Current Opinion in Rheumatology, 30(4), 412–419. https://doi.org/10.1097/BOR.0000000000000504

    Article  PubMed  Google Scholar 

  31. Fracture Risk Assessment Tool – calculation tool. (assessed 2023, August 3rd). Fracture Risk Assessment Tool. https://frax.shef.ac.uk/FRAX/tool.aspx?country=60.

  32. Kanis, J. A., Oden, A., Johnell, O., Johansson, H., De Laet, C., Brown, J., Burckhardt, P., Cooper, C., Christiansen, C., Cummings, S., Eisman, J. A., Fujiwara, S., Glüer, C., Goltzman, D., Hans, D., Krieg, M. A., La Croix, A., McCloskey, E., Mellstrom, D., … Yoshimura, N. (2007). The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporosis International, 18(8), 1033–1046. https://doi.org/10.1007/s00198-007-0343-y

    Article  CAS  PubMed  Google Scholar 

  33. Kanis, J. A., Johansson, H., Harvey, N. C., & McCloskey, E. V. (2018). A brief history of FRAX. Archives of Osteoporosis, 13(1), 118. https://doi.org/10.1007/s11657-018-0510-0

    Article  PubMed  PubMed Central  Google Scholar 

  34. McCloskey, E. V., Odén, A., Harvey, N. C., Leslie, W. D., Hans, D., Johansson, H., Barkmann, R., Boutroy, S., Brown, J., Chapurlat, R., Elders, P. J. M., Fujita, Y., Glüer, C. C., Goltzman, D., Iki, M., Karlsson, M., Kindmark, A., Kotowicz, M., Kurumatani, N., … Kanis, J. A. (2016). A Meta-Analysis of Trabecular Bone Score in Fracture Risk Prediction and Its Relationship to FRAX. Journal of Bone and Mineral Research, 31(5), 940–948. https://doi.org/10.1002/jbmr.2734

    Article  PubMed  Google Scholar 

  35. Jenkinson, C., Coulter, A., & Wright, L. (1993). Short form 36 (SF36) health survey questionnaire: Normative data for adults of working age. BMJ (Clinical Research Ed.), 306(6890), 1437–1440. https://doi.org/10.1136/bmj.306.6890.1437

    Article  CAS  PubMed  Google Scholar 

  36. de la Loge, C., Sullivan, K., Pinkney, R., Marquis, P., Roux, C., & Meunier, P. J. (2005). Cross-cultural validation and analysis of responsiveness of the QUALIOST: QUAlity of Life questionnaire In OSTeoporosis. Health and Quality of Life Outcomes, 3, 69. https://doi.org/10.1186/1477-7525-3-69

    Article  PubMed  PubMed Central  Google Scholar 

  37. Maslić Sersić, D., & Vuletić, G. (2006). Psychometric evaluation and establishing norms of Croatian SF-36 health survey: Framework for subjective health research. Croatian Medical Journal, 47(1), 95–102.

    PubMed  PubMed Central  Google Scholar 

  38. Ware, J. E., Jr., & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Medical care, 30(6), 473–483.

    Article  PubMed  Google Scholar 

  39. MNA® Forms for health care professional (assessed 2023, August 3rd). Nestlé Nutrition Institute. What is MNA®? https://frax.shef.ac.uk/FRAX/tool.aspx?country=60.

  40. Kaiser, M. J., Bauer, J. M., Ramsch, C., Uter, W., Guigoz, Y., Cederholm, T., Thomas, D. R., Anthony, P., Charlton, K. E., Maggio, M., Tsai, A. C., Grathwohl, D., Vellas, B., & Sieber, C. C. (2009). Validation of the Mini Nutritional Assessment short-form (MNA-SF): a practical tool for identification of nutritional status. The Journal of Nutrition, Health & Aging, 13(9), 782–788. https://doi.org/10.1007/s12603-009-0214-7

    Article  CAS  Google Scholar 

  41. Wu, S. F., & Du, X. J. (2016). Body mass index may positively correlate with bone mineral density of lumbar vertebra and femoral neck in postmenopausal females. Medical Science Monitor, 22, 145–151. https://doi.org/10.12659/msm.895512

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  42. Miyakoshi, N., Kudo, D., Hongo, M., Kasukawa, Y., Ishikawa, Y., & Shimada, Y. (2017). Comparison of spinal alignment, muscular strength, and quality of life between women with postmenopausal osteoporosis and healthy volunteers. Osteoporosis International, 28(11), 3153–3160. https://doi.org/10.1007/s00198-017-4184-z

    Article  CAS  PubMed  Google Scholar 

  43. Romagnoli, E., Carnevale, V., Nofroni, I., D’Erasmo, E., Paglia, F., De Geronimo, S., Pepe, J., Raejntroph, N., Maranghi, M., & Minisola, S. (2004). Quality of life in ambulatory postmenopausal women: The impact of reduced bone mineral density and subclinical vertebral fractures. Osteoporosis International, 15(12), 975–980. https://doi.org/10.1007/s00198-004-1633-2

    Article  PubMed  Google Scholar 

  44. Paulose, B., & Kamath, N. (2018). Quality of life of postmenopausal women in urban and rural communities. Journal of Menopausal Medicine, 24(2), 87–91. https://doi.org/10.6118/jmm.2018.24.2.87

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shangguan, X., Xiong, J., Shi, S., Liao, Y., Chen, L., Deng, J., Wu, W., Wang, J., Tu, J., Xiu, J., Wu, W., Chen, L., & Chen, K. (2022). Impact of the malnutrition on mortality in patients with osteoporosis: A cohort study from NHANES 2005–2010. Frontiers in nutrition, 9, 868166. https://doi.org/10.3389/fnut.2022.868166

    Article  PubMed  PubMed Central  Google Scholar 

  46. Salminen, H., Sääf, M., Johansson, S. E., Ringertz, H., & Strender, L. E. (2006). Nutritional status, as determined by the Mini-Nutritional Assessment, and osteoporosis: A cross-sectional study of an elderly female population. European Journal of Clinical Nutrition, 60(4), 486–493. https://doi.org/10.1038/sj.ejcn.1602341

    Article  CAS  PubMed  Google Scholar 

  47. Ozeraitiene, V., & Būtenaite, V. (2006). The evaluation of bone mineral density based on nutritional status, age, and anthropometric parameters in elderly women. Medicina (Kaunas, Lithuania), 42(10), 836–842.

    PubMed  Google Scholar 

  48. Bredella, M. A., Fazeli, P. K., Bourassa, J., Rosen, C. J., Bouxsein, M. L., Klibanski, A., & Miller, K. K. (2022). The effect of short-term high-caloric feeding and fasting on bone microarchitecture. Bone, 154, 116214. https://doi.org/10.1016/j.bone.2021.116214

    Article  CAS  PubMed  Google Scholar 

  49. Paolino, S., Pacini, G., Schenone, C., Patanè, M., Sulli, A., Sukkar, S. G., Lercara, A., Pizzorni, C., Gotelli, E., Cattelan, F., Goegan, F., Smith, V., & Cutolo, M. (2020). Nutritional status and bone microarchitecture in a cohort of systemic sclerosis patients. Nutrients, 12(6), 1632. https://doi.org/10.3390/nu12061632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weaver, A. A., Houston, D. K., Shapses, S. A., Lyles, M. F., Henderson, R. M., Beavers, D. P., Baker, A. C., & Beavers, K. M. (2019). Effect of a hypocaloric, nutritionally complete, higher-protein meal plan on bone density and quality in older adults with obesity: A randomized trial. The American Journal of Clinical Nutrition, 109(2), 478–486. https://doi.org/10.1093/ajcn/nqy237

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bueno-Vargas, P., Manzano, M., Pérez-Castillo, Í. M., Rueda, R., & López-Pedrosa, J. M. (2022). Dietary complex and slow digestive carbohydrates promote bone mass and improve bone microarchitecture during catch-up growth in rats. Nutrients, 14(6), 1303. https://doi.org/10.3390/nu14061303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Buckels, E. J., Bolam, S. M., Tay, M. L., & Matthews, B. G. (2021). The impact of maternal high-fat diet on bone microarchitecture in offspring. Frontiers in Nutrition, 8, 730037. https://doi.org/10.3389/fnut.2021.730037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Anupama, D. S., Norohna, J. A., Acharya, K. K., & Ravishankar, & George, A. (2020). Effect of exercise on bone mineral density and quality of life among postmenopausal women with osteoporosis without fracture: A systematic review. International Journal of Orthopaedic and Trauma Nursing, 39, 100796. https://doi.org/10.1016/j.ijotn.2020.100796

    Article  CAS  PubMed  Google Scholar 

  54. Papadopoulou, S. K., Papadimitriou, K., Voulgaridou, G., Georgaki, E., Tsotidou, E., Zantidou, O., & Papandreou, D. (2021). Exercise and nutrition impact on osteoporosis and sarcopenia-the incidence of osteosarcopenia: a narrative review. Nutrients, 13(12), 4499. https://doi.org/10.3390/nu13124499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MM, AN, MV, DM; Methodology: TTK, MM, JB, TV, JV, HU; Formal analysis: MM, MV, JV, MK; Investigation: MM, IR, HU; Visualization: MK, TV, MM; Writing—original draft preparation: MM, HU; Writing—review and editing: JB, IR, MV, DM, MK, JV, TV; Validation: MV, IR, DM; Funding acquisition: MV, AN, JB; Resources: TTK, JB; Supervision: MV, AN, TTK.

Corresponding author

Correspondence to Marino Vilovic.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of University of Split School of Medicine.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mornar, M., Novak, A., Bozic, J. et al. Quality of life in postmenopausal women with osteoporosis and osteopenia: associations with bone microarchitecture and nutritional status. Qual Life Res 33, 561–572 (2024). https://doi.org/10.1007/s11136-023-03542-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-023-03542-7

Keywords

Navigation