Alemayehu, D., & Cappelleri, J. C. (2012). Conceptual and analytical considerations toward the use of patient-reported outcomes in personalized medicine. American Health & Drug Benefits, 5(5), 310–317.
Google Scholar
Black, N., Burke, L., Forrest, C. B., Sieberer, U. H., Ahmed, S., Valderas, J. M., Bartlett, S. J., & Alonso, J. (2016). Patient-reported outcomes: Pathways to better health, better services, and better societies. Quality of Life Research, 25(5), 1103–1112.
CAS
PubMed
Article
Google Scholar
Gibbons, E., Black, N., Fallowfield, L., Newhouse, R., & Fitzpatrick, R. (2016). Essay 4: Patient-reported outcome measures and the evaluation of services. In R. Fitzpatrick & H. Barratt (Eds.), Challenges, solutions and future directions in the evaluation of service innovations in health care and public health. NIHR Journals Library.
Google Scholar
Lord, F. M. (1980). Applications of item response theory to practical testing problems. Lawrence Erlbaum Associates.
Google Scholar
Muthén, B. O. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557–585.
Article
Google Scholar
Mellenbergh, G. J. (1989). Item bias and item response theory. International Journal of Educational Research, 13, 127–143.
Article
Google Scholar
Meredith, W. (1964). Notes on factorial invariance. Psychometrika, 29, 177–185.
Article
Google Scholar
Meredith, W. (1993). Measurement invariance, factor analysis, and factorial invariance. Psychometrika, 58, 525–543.
Article
Google Scholar
Millsap, R. E. (2011). Statistical approaches to measurement invariance. Routledge.
Google Scholar
Teresi, J. A., Wang, C., Kleinman, M., Jones, R. N., & Weiss, D. J. (2021). Differential item functioning analyses of the patient-reported outcomes measurement information system (PROMIS®) Measures: methods, challenges, advances, and future directions. Psychometrika, 86, 674–711. https://doi.org/10.1007/s11336-021-09775-0
Article
PubMed
PubMed Central
Google Scholar
Meredith, W., & Teresi, J. A. (2006). An essay on measurement and factorial invariance. Medical Care, 44(Suppl 3), S69–S77. https://doi.org/10.1097/01.mlr.0000245438.73837.89
Article
PubMed
Google Scholar
Teresi, J. A., & Fleishman, J. A. (2007). Differential item functioning and health assessment. Quality of Life Research, 16(Suppl 1), 33–42.
PubMed
Article
Google Scholar
McHorney, C. A., & Fleishman, J. A. (2006). Assessing and understanding measurement equivalence in health outcome measures. Issues for further quantitative and qualitative inquiry. Medical Care, 44(11 Suppl 3), S205–S210.
PubMed
Article
Google Scholar
Schmitt, N., & Kuljanin, G. (2008). Measurement invariance: Review of practice and implications. Human Resource Management Review, 18(4), 210–222.
Article
Google Scholar
Holland, P. W., & Thayer, D. T. (1988). Differential item functioning and the Mantel Haenszel procedure. In H. Wainer, H. I. Braun, & Educational Testing Service (Eds.), Test validity (pp. 129–145). NJ: L Erlbaum Associates.
Google Scholar
Crane, P. K., Gibbons, L. E., Jolley, L., & van Belle, G. (2006). Differential item functioning analysis with ordinal logistic regression techniques. DIFdetect and difwithpar. Medical Care, 44(11 Suppl 3), S115–S123.
PubMed
Article
Google Scholar
Zumbo, B. D. (1999). A handbook on the theory and methods of differential item functioning (DIF): Logistic regression modeling as a unitary framework for binary and Likert-type (ordinal) item scores. Directorate of Human Resources Research and Evaluation, Department of National Defense.
Google Scholar
Swaminathan, H., & Rogers, H. J. (1990). Detecting differential item functioning using logistic regression procedures. Journal of Educational Measurement, 27, 361–370.
Article
Google Scholar
Wu, Q., & Lei, P-W. Using multi-group confirmatory factor analysis to detect differential item functioning when tests are multidimensional. Paper presented at the Annual Meeting of the National Council for Measurement in Education, San Diego: CA, 2009
Gonzales-Roma, V., Hernandez, A., & Gomez-Benito, J. (2006). Power and Type-I error of the mean and covariance structure analysis model for detecting differential item functioning in graded response items. Multivariate Behavioral Research, 41(1), 29–53.
Article
Google Scholar
Holland, P. W., & Thayer, D. T. (1988). Differential item functioning and the Mantel-Haenszel procedure. In H. Wainer & H. I. Braun (Eds.), Test Validity (pp. 129–145). Lawrence Erlbaum Associates.
Google Scholar
DeMars, C. E. (2009). Modification of the Mantel-Haenszel and logistic regression DIF procedures to incorporate the SIBTEST regression correction. Journal of Educational Behavioral Statistics, 34, 149–170.
Article
Google Scholar
Shealy, R., & Stout, W. F. (1993). A model-based standardization approach that separates true bias/DIF from group differences and detects test bias/DIF as well as item bias/DIF. Psychometrika, 58, 159–194.
Article
Google Scholar
Güler, N., & Penfield, R. D. (2009). A comparison of logistic regression and contingency table methods for simultaneous detection of uniform and nonuniform DIF. Journal of Educational Measurement, 46(3), 314–329.
Article
Google Scholar
De Ayala, R. J. (2009). The theory and practice of item response theory. Guilford Press.
Google Scholar
Flowers, C. P., Oshima, T. C., & Raju, N. S. (1999). A description and demonstration of the polytomous-DFIT framework. Applied Psychological Measurement, 23, 309–326.
Article
Google Scholar
Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Pscyhological Measurement, 14(3), 271–282.
Article
Google Scholar
Mislevy, R. J., & Verhelst, N. (1990). Modeling item responses when different subjects employ different solution strategies. Psychometrika, 55, 195–215.
Article
Google Scholar
Sen, S., & Cohen, A. S. (2019). Applications of mixture IRT models: A literature review. Measurement: Interdisciplinary Research and Perspectives, 17(4), 177–191.
Google Scholar
Wu, X., Sawatzky, R., Hopman, W., Mayo, N., Sajobi, T. T., Liu, J., Prior, J., Papaioannou, A., Josse, R. G., Towheed, T., Davison, K. S., & Lix, L. M. (2017). Latent variable mixture models to test for differential item functioning: a population-based analysis. Health Qual Life Outcomes, 15, 102.
PubMed
PubMed Central
Article
Google Scholar
Sawatzky, R., Ratner, P. A., Kopec, J. A., & Zumbo, B. D. (2012). Latent variable mixture models: A promising approach for the validation of patient-reported outcomes. Quality of Life Research, 21(4), 637–650.
PubMed
Article
Google Scholar
Sawatzky, R., Russell, L. B., Sajobi, T. T., Lix, L. M., Kopec, J., & Zumbo, B. D. (2018). The use of latent variable mixture models to identify invariant items in test construction. Quality of Life Research, 27(7), 1747–1755.
Article
Google Scholar
Samuelsen, K. M. (2005).Examining differential item functioning from a latent class perspective. PhD Thesis, University of Maryland; Retrieved January 29, 2019 from http://gradworks.umi.com/31/75/3175148.html.
Samuelsen, K. M. (2008). Examining differential item functioning from a latent mixture perspective. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 177–197). Information Age.
Google Scholar
Lu, R., & Jiao, H. (2009). Detecting DIF using the mixture Rasch model. Paper presented at the annual meeting of the National Council on Measurement in Education, San Diego, CA
Li, F., Cohen, A. S., Kim, S. H., & Cho, S. J. (2009). Model selection methods for mixture dichotomous IRT models. Applied Psychological Measurement, 33, 353–373.
Article
Google Scholar
Maij-de Meij, A. M., Kelderman, H., & van der Flier, H. (2010). Improvement in detection of differential item functioning using a mixture item response theory model. Multivariate Behavioral Research, 45(6), 975–999.
PubMed
Article
Google Scholar
Demars, C. E., & Lau, A. (2011). Differential item functioning in with latent classes: How accurately can we detect who is responding differentially? Educational Psychology & Measurement, 71(4), 597–616.
Article
Google Scholar
Sen, S., Cohen, A. S., & Kim, S. (2016). The impact of non-normality on extraction of spurious latent classes in mixture IRT models. Applied Psychological Measurement, 40(2), 98–113.
PubMed
Article
Google Scholar
McLachlan, G., & Peel, D. (2000). Finite mixture models. Wiley series in probability and statistics. Wiley.
Book
Google Scholar
Celeux, G., Hurn, M., & Robert, C. P. (2000). Computational and inferential difficulties with mixture posterior distributions. Journal of the American Statistical Association, 95(451), 957–970.
Article
Google Scholar
Rousseau, J., & Mengersen, K. (2011). Asymptotic behaviour of the posterior distribution in overfitted mixture models. Journal of the Royal Statistical Society: B, 73(Part 5), 689–710.
Article
Google Scholar
Samejima, F. (1997). Graded response model. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 85–100). Springer.
Chapter
Google Scholar
Lubke, G. H., & Muthén, B. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10, 21–39.
PubMed
Article
Google Scholar
Baghaei, P., & Carstensen, C. H. (2013). Fitting the mixed Rasch model to a reading comprehension test: Identifying reader types. Practical Assessment, Research & Evaluation, 18(5), n5.
Google Scholar
Preinerstorfer, D., & Formann, A. K. (2011). Parameter recovery and model selection in mixed Rasch models. British Journal of Mathematical & Statistical Psychology, 65(2), 251–262.
Article
Google Scholar
Kutscher, T., Eid, M., & Crayen, C. (2019). Sample size requirements for applying mixed polytomous item response models: Results of a Monte Carlo simulation study. Frontiers in Psychology, 13(10), 2494.
Article
Google Scholar
Choi, I. H., Paek, I., & Cho, S. J. (2017). The impact of various class-distinction features on model selection in the mixture Rasch model. Journal of Experimental Education., 85(3), 411–424.
Article
Google Scholar
Jin, K. Y., & Wang, W. C. (2014). Item response theory models for performance decline during testing. Journal of Educational Measurement, 51, 178–200.
Article
Google Scholar
Zumbo, B. D., & Harwell, M. R. (1999). The methodology of methodological research: Analyzing the results of simulation experiments (Paper No. ESQBS99–2). University of Northern British Columbia. Edgeworth Laboratory for Quantitative Behavioral Science
Muthén, L. K., & Muthén, B. O. (2017). Mplus: statistical analysis with latent variables: User’s Guide (Version 8). Mplus, 2017
R Core Team. (2018). R: A Language and environment for statistical computing. R Foundation for Statistical Computing
Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of growth mixture models: Implications for over-extraction of latent trajectory classes. Psychological Methods, 8, 338–363.
PubMed
Article
Google Scholar
Alexeev, N., Templin, J., & Cohen, A. S. (2011). Spurious latent classes in the mixture Rasch model. Journal of Educational Measurement, 48, 313–332.
Article
Google Scholar
Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Model, 14, 535–569.
Article
Google Scholar
Muthén, B., Brown, C. H., Masyn, K., Jo, B., Khoo, S. T., Yang, C. C., et al. (2002). General growth mixture modeling for randomized preventive interventions. Biostatistics, 3, 459–475.
PubMed
Article
Google Scholar
Lin, T. H., & Dayton, C. M. (1997). Model selection information criteria for non-nested latent class models. Journal of Educational and Behavioral Statistics, 22, 249–264.
Article
Google Scholar
Tein, J. Y., Coxe, S., & Cham, H. (2013). Statistical power to detect the correct number of classes in latent profile analysis. Structural Equation Modeling: A Multidisciplinary Journal, 20(4), 640–657.
Article
Google Scholar
Finch, W. H., & French, B. F. (2012). Parameter estimation with mixture item response theory models: A Monte Carlo comparison of maximum likelihood and Bayesian methods. Journal of Modern Applied Statistical Methods, 11(1), 167–178.
Article
Google Scholar
Cho, S.-J., Cohen, A. S., & Kim, S.-H. (2013). Markov Chain Monte Carlo estimation of a mixture item response model. Journal of Statistical Computation & Simulation, 83, 278–306.
Article
Google Scholar