One slope does not fit all: longitudinal trajectories of quality of life in older adulthood

Abstract

Purpose

Maintaining or improving quality of life (QoL) in later life has become a major policy objective. Yet we currently know little about how QoL develops at older ages. The few studies that have modelled QoL change across time for older adults have used ‘averaged’ trajectories. However, this ignores the variations in the way QoL develops between groups of older adults.

Methods

We took a theoretically informed ‘capabilities approach’ to measuring QoL. We used four waves of data, covering 6 years, from the New Zealand Health, Work and Retirement Study (NZHWR) (N = 3223) to explore whether distinct QoL trajectories existed. NZHWR is a nationally representative longitudinal study of community-dwelling adults aged 50 + in New Zealand. Growth mixture modelling was applied to identify trajectories over time and multinomial regressions were calculated to test baseline differences in demographic variables (including age, gender, ethnicity, education and economic living standards).

Results

We found five QoL trajectories: (1) high and stable (51.94%); (2) average and declining (22.74%); (3) low and increasing (9.62%); (4) low and declining (10.61%); (5) low and stable (5.09%). Several differences across profiles in baseline demographic factors were identified, with economic living standards differentiating between all profiles.

Conclusions

The trajectory profiles demonstrate that both maintaining and even improving QoL in later life is possible. This has implications for our capacity to develop nuanced policies for diverse groups of older adults.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    Indigenous population of Aotearoa/New Zealand.

References

  1. 1.

    United Nations. (1982). Vienna International Plan of Action on Ageing. Retrieved from: www.un.org/development/desa/ageing/resources/vienna-international-plan-of-action.html

  2. 2.

    United Nations. (2002). Madrid International Plan of Action on Ageing. Retrieved from: www.un.org/development/desa/ageing/madrid-plan-of-action-and-its-implementation.html

  3. 3.

    World Health Organization. (2002). Active ageing: A policy framework. Retrieved from: www.who.int/ageing/publications/active_ageing/en/

  4. 4.

    World Health Organization. (2007). Global age-friendly cities: A guide. Retrieved from: www.who.int/ageing/age_friendly_cities_guide/en/

  5. 5.

    World Health Organization. (2017). Global strategy and action plan on ageing and health. Retrieved from: www.who.int/ageing/WHO-GSAP-2017.pdf?ua=1

  6. 6.

    World Health Organization. (2015). World report on ageing and health. Retrieved from: www.who.int/ageing/events/world-report-2015-launch/en/

  7. 7.

    Stone, M. E., Lin, J., Dannefer, D., & Kelley-Moore, J. A. (2017). The continued eclipse of heterogeneity in gerontological research. The Journals of Gerontology: Series B, 72(1), 162–167. https://doi.org/10.1093/geronb/gbv068.

    Article  Google Scholar 

  8. 8.

    Walker, A. (2005). A European perspective on quality of life in old age. European Journal of Ageing, 2(1), 2–12. https://doi.org/10.1007/s10433-005-0500-0.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Halvorsrud, L., & Kalfoss, M. (2007). The conceptualization and measurement of quality of life in older adults: A review of empirical studies published during 1994–2006. European Journal of Ageing, 4(4), 229–246. https://doi.org/10.1007/s10433-007-0063-3.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Bowling, A., & Gabriel, Z. (2007). Lay theories of quality of life in older age. Ageing & Society, 27(6), 827–848. https://doi.org/10.1017/S0i44686X07006423.

    Article  Google Scholar 

  11. 11.

    Anderson, R. B., & Testa, M. A. (1994). Symptom distress checklists as a component of quality of life measurement: Comparing prompted reports by patient and physician with concurrent adverse event reports via the physician. Drug Information Journal, 28(1), 89–114. https://doi.org/10.1177/009286159402800112.

    Article  Google Scholar 

  12. 12.

    Hays, R. D., Hahn, H., & Marshall, G. (2002). Use of the SF-36 and other health-related quality of life measures to assess persons with disabilities. Archives of Physical Medicine and Rehabilitation, 83, S4–S9. https://doi.org/10.1053/apmr.2002.36837.

    Article  PubMed  Google Scholar 

  13. 13.

    Ul-Haq, Z., Mackay, D. F., Fenwick, E., & Pell, J. P. (2013). Meta-analysis of the association between body mass index and health-related quality of life among adults, assessed by the SF-36. Obesity, 21(3), E322–E327. https://doi.org/10.1002/oby.20107.

    Article  PubMed  Google Scholar 

  14. 14.

    Wang, R., Wu, C., Zhao, Y., Yan, X., Ma, X., Wu, M., & He, J. (2008). Health-related quality of life measured by SF-36: population-based study in Shanghai, China. BMC Public Health, 8(1), 292. https://doi.org/10.1186/1471-2458-8-292.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Albrecht, G. L., & Devlieger, P. J. (1999). The disability paradox: High quality of life against all odds. Social Science & Medicine, 48(8), 977–988. https://doi.org/10.1016/S0277-9536(98)00411-0.

    CAS  Article  Google Scholar 

  16. 16.

    Fellinghauer, B., Reinhardt, J. D., Stucki, G., & Bickenbach, J. (2012). Explaining the disability paradox: A cross-sectional analysis of the Swiss general population. BMC Public Health, 12(1), 655. https://doi.org/10.1186/1471-2458-12-655.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Szabó, Á., Klokgieters, S., Kok, A. A. L., Van Tilburg, T. G., & Huisman, M. (2020). Psychological resilience in the context of disability: A study with Turkish and Moroccan young-old immigrants living in the Netherlands. The Gerontologist, 60, 259–269. https://doi.org/10.1093/geront/gnz129.

    Article  PubMed  Google Scholar 

  18. 18.

    Moons, P., Budts, W., & De Geest, S. (2006). Critique on the conceptualisation of quality of life: A review and evaluation of different conceptual approaches. International Journal of Nursing Studies, 43(7), 891–901. https://doi.org/10.1016/j.ijnurstu.2006.03.015.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Stephens, C. (2017). From success to capability for healthy ageing: Shifting the lens to include all older people. Critical Public Health, 27(4), 490–498. https://doi.org/10.1080/09581596.2016.1192583.

    Article  Google Scholar 

  20. 20.

    Gopinath, M. (2018). Thinking about later life: Insights from the capability approach. Ageing International, 43, 254–264. https://doi.org/10.1007/s12126-018-9323-0.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Stephens, C., Breheny, M., & Mansvelt, J. (2015). Healthy ageing from the perspective of older people: A capability approach to resilience. Psychology & Health, 30(6), 715–731. https://doi.org/10.1080/08870446.2014.904862.

    Article  Google Scholar 

  22. 22.

    Sen, A. (1993). Capability and well-being. In M. C. Nussbaum & A. Sen (Eds.), The quality of life. (pp. 30–53). Oxford: Clarendon Press.

    Chapter  Google Scholar 

  23. 23.

    Sen, A. (1992). Inequality re-examined. New York, NY: Russell Sage Foundation.

    Google Scholar 

  24. 24.

    Sen, A. (2009). The idea of justice. London: Penguin. https://doi.org/10.2307/j.ctvjnrv7n.

    Book  Google Scholar 

  25. 25.

    Coast, J. (2019). Assessing capability in economic evaluation: A life course approach? The European Journal of Health Economics, 20, 779–784. https://doi.org/10.1007/s10198-018-1027-6.

    Article  PubMed  Google Scholar 

  26. 26.

    Zubrick, S., Taylor, C., Lawrence, D., Mitrou, F., Christensen, D., & Dalby, R. (2009). Round table: Lifecourse epidemiology: The development of human capability across the lifecourse: Perspectives from childhood. Australasian Epidemiologist, 16, 6–10.

    Google Scholar 

  27. 27.

    Hyde, M., Wiggins, R. D., Higgs, P., & Blane, D. B. (2003). A measure of quality of life in early old age: The theory, development and properties of a needs satisfaction model (CASP-19). Aging & Mental Health, 7(3), 186–194. https://doi.org/10.1080/1360786031000101157.

    CAS  Article  Google Scholar 

  28. 28.

    Hyde, M., Higgs, P., Wiggins, R. D., & Blane, D. (2015). A decade of research using the CASP scale: key findings and future directions. Aging & Mental Health, 19, 571–575. https://doi.org/10.1080/13607863.2015.1018868.

    CAS  Article  Google Scholar 

  29. 29.

    Conde-Sala, J. L., Portellano-Ortiz, C., Calvó-Perxas, L., & Garre-Olmo, J. (2017). Quality of life in people aged 65+ in Europe: Associated factors and models of social welfare—analysis of data from the SHARE project (Wave 5). Quality of Life Research, 26(4), 1059–1070. https://doi.org/10.1007/s11136-016-1436-x.

    Article  PubMed  Google Scholar 

  30. 30.

    Netuveli, G., & Bartley, M. (2012). Perception is reality: Effect of subjective versus objective socio-economic position on quality of life. Sociology-the Journal of the British Sociological Association, 46(6), 1208–1215. https://doi.org/10.1177/0038038512455963.

    Article  Google Scholar 

  31. 31.

    Netuveli, G., Wiggins, R. D., Hildon, Z., Montgomery, S. M., & Blane, D. (2005). Functional limitation in long standing illness and quality of life: Evidence from a national survey. BMJ, 331(7529), 1382–1383. https://doi.org/10.1136/bmj.331.7529.1382.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Netuveli, G., Wiggins, R. D., Hildon, Z., Montgomery, S. M., & Blane, D. (2006). Quality of life at older ages: Evidence from the English longitudinal study of aging (wave 1). Journal of Epidemiology and Community Health, 60(4), 357–363. https://doi.org/10.1136/jech.2005.040071.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Portellano-Ortiz, C., Garre-Olmo, J., Calvó-Perxas, L., & Conde-Sala, J. L. (2018). Depression and variables associated with quality of life in people over 65 in Spain and Europe. Data from SHARE 2013. The European Journal of Psychiatry, 32(3), 122–131. https://doi.org/10.1016/j.ejpsy.2017.11.002.

    Article  Google Scholar 

  34. 34.

    Siegrist, J., & Wahrendorf, M. (2009). Participation in socially productive activities and quality of life in early old age: Findings from SHARE. Journal of European Social Policy, 19(4), 317–326. https://doi.org/10.1177/1350506809341513.

    Article  Google Scholar 

  35. 35.

    Crystal, S., Shea, D. G., & Reyes, A. M. (2016). Cumulative advantage, cumulative disadvantage, and evolving patterns of late-life inequality. The Gerontologist, 57(5), 910–920. https://doi.org/10.1093/geront/gnw056.

    Article  PubMed Central  Google Scholar 

  36. 36.

    Ward, M., McGarrigle, C., & Kenny, R. (2019). More than health: Quality of life trajectories among older adults—findings from The Irish Longitudinal Study of Ageing (TILDA). Quality of Life Research, 28(2), 429–439. https://doi.org/10.1007/s11136-018-1997-y.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Zaninotto, P., Falaschetti, E., & Sacker, A. (2009). Age trajectories of quality of life among older adults: Results from the English Longitudinal Study of Ageing. Quality of Life Research, 18(10), 1301–1309. https://doi.org/10.1007/s11136-009-9543-6.

    Article  PubMed  Google Scholar 

  38. 38.

    Asakawa, K., Senthilselvan, A., Feeny, D., Johnson, J., & Rolfson, D. (2012). Trajectories of health-related quality of life differ by age among adults: Results from an eight-year longitudinal study. Journal of Health Economics, 31(1), 207–218. https://doi.org/10.1016/j.jhealeco.2011.10.002.

    Article  PubMed  Google Scholar 

  39. 39.

    Roberts, A. R., & Adams, K. B. (2018). Quality of life trajectories of older adults living in senior housing. Research on Aging, 40(6), 511–534. https://doi.org/10.1177/0164027517713313.

    Article  PubMed  Google Scholar 

  40. 40.

    Szabo, A., Allen, J., Alpass, F., & Stephens, C. (2017). Longitudinal trajectories of quality of life and depression by housing tenure status. The Journals of Gerontology: Series B, 73(8), e165–e174. https://doi.org/10.1093/geronb/gbx028.

    Article  Google Scholar 

  41. 41.

    Wang, M., & Bodner, T. E. (2007). Growth mixture modeling: Identifying and predicting unobserved subpopulations with longitudinal data. Organizational Research Methods, 10(4), 635–656. https://doi.org/10.1177/1094428106289397.

    Article  Google Scholar 

  42. 42.

    Reinecke, J., & Seddig, D. (2011). Growth mixture models in longitudinal research. AStA Advances in Statistical Analysis, 95(4), 415–434. https://doi.org/10.1007/s10182-011-0171-4.

    Article  Google Scholar 

  43. 43.

    Baron, E., Bass, J., Murray, S. M., Schneider, M., & Lund, C. (2017). A systematic review of growth curve mixture modelling literature investigating trajectories of perinatal depressive symptoms and associated risk factors. Journal of Affective Disorders, 223, 194–208. https://doi.org/10.1016/j.jad.2017.07.046.

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Moreno-Agostino, D., de la Torre-Luque, A., de la Fuente, J., Lara, E., Martín-María, N., Moneta, M. V., & Ayuso-Mateos, J. L. (2021). Determinants of subjective wellbeing trajectories in older adults: A growth mixture modeling approach. Journal of Happiness Studies, 22(2), 709–726. https://doi.org/10.1007/s10902-020-00248-2.

    Article  Google Scholar 

  45. 45.

    Burns, R. A., Byles, J., Magliano, D. J., Mitchell, P., & Anstey, K. J. (2015). The utility of estimating population-level trajectories of terminal wellbeing decline within a growth mixture modelling framework. Social Psychiatry and Psychiatric Epidemiology, 50(3), 479–487. https://doi.org/10.1007/s00127-014-0948-3.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Allen, J., Alpass, F. M., & Stephens, C. V. (2020). New Zealand Health, Work and Retirement Longitudinal Study. Encyclopedia of Gerontology and Population Aging. https://doi.org/10.1007/978-3-319-69892-2_977-2.

    Article  Google Scholar 

  47. 47.

    Allen, J. (2017). Technical Report: 2016 Health, Work and Retirement (HWR) survey. Massey University. https://www.massey.ac.nz/massey/learning/departments/school-of-psychology/research/hart/new-zealand-health-work-and-retirement-study/technical-reports.cfm

  48. 48.

    Jensen, J., Spittal, M., Crichton, S., Sathiyandra, S., & Krishnan, V. (2002). Direct measurement of living standards: The New Zealand ELSI scale. Retrieved from: www.msd.govt.nz/about-msd-and-our-work/publications-resources/monitoring/living-standards/living-standards-elsi.html

  49. 49.

    Wiggins, R. D., Netuveli, G., Hyde, M., Higgs, P., & Blane, D. (2008). The evaluation of a self-enumerated scale of quality of life (CASP-19) in the context of research on ageing: A combination of exploratory and confirmatory approaches. Social Indicators Research, 89(1), 61–77. https://doi.org/10.1007/s11205-007-9220-5.

    Article  Google Scholar 

  50. 50.

    Towers, A., Yeung, P., Stevenson, B., Stephens, C., & Alpass, F. (2015). Quality of life in indigenous and non-indigenous older adults: Assessing the CASP-12 factor structure and identifying a brief CASP-3. Quality of Life Research, 24(1), 193–203. https://doi.org/10.1007/s11136-014-0756-y.

    Article  PubMed  Google Scholar 

  51. 51.

    Muthén, L. K., & Muthén, B. O. (1998 –2017). Mplus user’s guide. Published by the Author. https://www.statmodel.com

  52. 52.

    Nylund, K. L., Asparoutiov, T., & Muthen, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535–569. https://doi.org/10.1080/10705510701575396.

    Article  Google Scholar 

  53. 53.

    Lo, Y. T. (2005). Likelihood ratio tests of the number of components in a normal mixture with unequal variances. Statistics & Probability Letters, 71(3), 225–235. https://doi.org/10.1016/j.spl.2004.11.007.

    Article  Google Scholar 

  54. 54.

    Lo, Y. T., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88(3), 767–778. https://doi.org/10.1093/biomet/88.3.767.

    Article  Google Scholar 

  55. 55.

    Clark, S., & Muthén, B. (2009). Relating latent class analysis results to variables not included in the analysis. Retrieved from https://www.statmodel.com/download/relatinglca.pdf

  56. 56.

    Ram, N., & Grimm, K. J. (2009). Growth mixture modeling: A method for identifying differences in longitudinal change among unobserved groups. International Journal of Behavioral Development, 33(6), 565–576. https://doi.org/10.1177/0165025409343765.

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Asparouhov, T., & Muthén, B. (2014). Auxiliary variables in mixture modeling: Three-step approaches using Mplus. Structural Equation Modeling: A Multidisciplinary Journal, 21(3), 329–341. https://doi.org/10.1080/10705511.2014.915181.

    Article  Google Scholar 

  58. 58.

    Vermunt, J. K. (2010). Latent class modeling with covariates: Two improved three-step approaches. Political Analysis, 18(4), 450–469. https://doi.org/10.1093/pan/mpq025.

    Article  Google Scholar 

  59. 59.

    Stephens, C., Alpass, F., Allen, J., Szabo, A., Stevenson, B., & Towers, A. (2018). The New Zealand Health, Work & Retirement Longitudinal Study 2006–2016. Palmerston North, NZ: Health and Ageing Research Team, Massey University.

    Google Scholar 

  60. 60.

    Tein, J. Y., Coxe, S., & Cham, H. (2013). Statistical power to detect the correct number of classes in latent profile analysis. Structural Equation Modeling: A Multidisciplinary Journal, 20(4), 640–657. https://doi.org/10.1080/10705511.2013.824781.

    Article  Google Scholar 

  61. 61.

    Szabo, A., Allen, J., Alpass, F., & Stephens, C. (2019). Loneliness, socio-economic status and quality of life in old age: The moderating role of housing tenure. Ageing & Society, 39(5), 998–1021. https://doi.org/10.1017/S0144686X17001362.

    Article  Google Scholar 

  62. 62.

    Perry, B. (2014). Household Incomes in New Zealand: trends in indicators of inequality and hardship 1982 to 2013. Retrieved from Wellington: https://www.msd.govt.nz/about-msd-and-our-work/publications-resources/monitoring/household-incomes/

  63. 63.

    Allen, J., & Alpass, F. M. (2020). Trajectories of material living standards, physical health and mental health under a universal pension. Journal of Epidemiology and Community Health, 74, 362–368. https://doi.org/10.1136/jech-2019-213199.

    Article  PubMed  Google Scholar 

  64. 64.

    Szabó, Á., Allen, J., Stephens, C., & Alpass, F. (2019). Is retirement associated with health benefits? A longitudinal investigation with older New Zealanders. Age and Aging, 48, 267–272. https://doi.org/10.1093/ageing/afy176.

    Article  Google Scholar 

  65. 65.

    Wildman, J. M., Moffatt, S., & Pearce, M. (2018). Quality of life at the retirement transition: Life course pathways in an early ‘baby boom’ birth cohort. Social Science & Medicine, 207, 11–18. https://doi.org/10.1016/j.socscimed.2018.04.011.

    Article  Google Scholar 

  66. 66.

    Stephens, C., Szabó, Á., & Breheny, M. (2020). Social inequalities over the lifecourse and healthy ageing in Aotearoa/New Zealand: Differences by Māori ethnicity and gender. Ageing & Society. https://doi.org/10.1017/S0144686X20001130.

    Article  Google Scholar 

  67. 67.

    Brown, G. C. (2015). Living too long. Embo Reports, 16(2), 137–141. https://doi.org/10.15252/embr.201439518.

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

Data collection was funded by the New Zealand Ministry of Business, Innovation and Employment (MAUX0902, MAUX0401, MAUX1205, MAUX1403).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ágnes Szabó.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This research project was approved by the School of Psychology’s Human Ethics Committee. Participants provided consent by signing a consent form and returning it to the researchers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Szabó, Á., Hyde, M. & Towers, A. One slope does not fit all: longitudinal trajectories of quality of life in older adulthood. Qual Life Res 30, 2161–2170 (2021). https://doi.org/10.1007/s11136-021-02827-z

Download citation

Keywords

  • Capabilities approach
  • CASP
  • Latent class growth analysis
  • Longitudinal
  • Quality of life
  • Trajectory analysis