Case 3 model of McGraw and Wong [6, p34]:
|
Two-way mixed model with interaction
\({{\varvec{x}}_{{\varvec{i}}{\varvec{j}}}}=\varvec{\mu}+{{\varvec{p}}_{\varvec{i}}}+{{\varvec{t}}_{\varvec{j}}}+{\varvec{p}}{{\varvec{t}}_{{\varvec{i}}{\varvec{j}}}}+{{\varvec{e}}_{{\varvec{i}}{\varvec{j}}}}\), where
\(\varvec{\mu}\): grand mean
\({{\varvec{p}}_{\varvec{i}}}:\) difference due to patient i (i = 1, …, n), \({{\varvec{p}}_{{\varvec{i}}~}}\sim ~{\mathbf{Normal}}(0,~~\varvec{\sigma}_{{\varvec{p}}}^{2})\)
\({{\varvec{t}}_{\varvec{j}}}:\) difference due to time point j (j = 1, …, k), \(\mathop \sum \limits_{{{\varvec{j}}=1}}^{{\varvec{k}}} {{\varvec{t}}_{\varvec{j}}}=0\)
\({\varvec{p}}{{\varvec{t}}_{{\varvec{i}}{\varvec{j}}}}:\) interaction between patient i and time point j, \(\mathop \sum \limits_{{{\varvec{j}}=1}}^{{\varvec{k}}} {\varvec{p}}{{\varvec{t}}_{{\varvec{i}}{\varvec{j}}}}=0\) and \({\varvec{p}}{{\varvec{t}}_{{\varvec{i}}{\varvec{j}}}}~\sim ~{\mathbf{Normal}}(0,~~\varvec{\sigma}_{{{\varvec{p}}{\varvec{t}}}}^{2})\)
\({{\varvec{e}}_{{\varvec{i}}{\varvec{j}}}}\): random error, \({{\varvec{e}}_{{\varvec{i}}{\varvec{j}}}}~\sim ~{\mathbf{Normal}}(0,~~\varvec{\sigma}_{{\varvec{e}}}^{2})\)
|