Skip to main content

Advertisement

Log in

Can the e-OAKHQOL be an alternative to measure health-related quality of life in knee osteoarthritis?

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Objective

To assess the validity of the e-OAKHQOL questionnaire and analyze whether the answers were affected by the form of administration (electronic vs. paper).

Methods

Two samples of patients with knee osteoarthritis were constituted. The first was recruited by general practitioners. Patients could choose to respond to the electronic or paper version. The second included subjects who responded to the paper version and were matched with respondents to the electronic version in the first sample. The OAKHQOL questionnaire measures health-related quality of life in five dimensions (43 items): physical activity, mental health, pain, social functioning, and social support. Validity was assessed by the classical test theory (CTT) and a Rasch measurement model (partial credit model).

Results

The electronic form was preferred by 471 (89.7%) patients: 345 were matched to respondents of the paper version. The percentage of missing responses was lower with the electronic than paper form (1.6 vs. 2.0%, p = .01). Rasch analysis revealed four items with underfitting. Internal consistency was excellent for physical activity (PSI = 0.96) and mental health (PSI = 0.93) but was slightly < 0.85 for the other dimensions. The top–down purification highlighted the significance of DIF by gender in the pain dimension and by form of questionnaire in the mental health dimension.

Conclusion

CTT and Rasch analysis demonstrated acceptable measurement properties for the five dimensions of the e-OAKHQOL, so it may be a valuable alternative to the paper form for measuring HRQoL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cross, M., Smith, E., Hoy, D., Nolte, S., Ackerman, I., Fransen, M., et al. (2014). The global burden of hip and knee osteoarthritis: Estimates from the global burden of disease 2010 study. Annals of the Rheumatic Diseases, 73(7), 1323–1330. https://doi.org/10.1136/annrheumdis-2013-204763.

    Article  PubMed  Google Scholar 

  2. Guillemin, F., Rat, A. C., Mazieres, B., Pouchot, J., Fautrel, B., Euller-Ziegler, L., et al. (2011). Prevalence of symptomatic hip and knee osteoarthritis: A two-phase population-based survey1. Osteoarthritis and Cartilage, 19(11), 1314–1322. https://doi.org/10.1016/j.joca.2011.08.004.

    Article  CAS  PubMed  Google Scholar 

  3. Rat, A.-C., Baumann, C., Guillemin, F., & Pouchot, J. (2010). Qualité de vie en rhumatologie. EMC—Appareil locomoteur, 5(1), 1–9. https://doi.org/10.1016/S0246-0521(10)46822-9.

    Article  Google Scholar 

  4. Rat, A.-C., Coste, J., Pouchot, J., Baumann, M., Spitz, E., Retel-Rude, N., et al. (2005). OAKHQOL: A new instrument to measure quality of life in knee and hip osteoarthritis. Journal of Clinical Epidemiology, 58(1), 47–55. https://doi.org/10.1016/j.jclinepi.2004.04.011.

    Article  PubMed  Google Scholar 

  5. Rat, A.-C., Pouchot, J., Coste, J., Baumann, C., Spitz, E., Retel-Rude, N., et al. (2006). Development and testing of a specific quality-of-life questionnaire for knee and hip osteoarthritis: OAKHQOL (OsteoArthritis of Knee Hip Quality Of Life). Joint Bone Spine, 73(6), 697–704. https://doi.org/10.1016/j.jbspin.2006.01.027.

    Article  PubMed  Google Scholar 

  6. Goetz, C., Ecosse, E., Rat, A.-C., Pouchot, J., Coste, J., & Guillemin, F. (2011). Measurement properties of the osteoarthritis of knee and hip quality of life OAKHQOL questionnaire: An item response theory analysis. Rheumatology, 50(3), 500–505. https://doi.org/10.1093/rheumatology/keq357.

    Article  PubMed  Google Scholar 

  7. Guillemin, F., Rat, A.-C., Goetz, C., Spitz, E., Pouchot, J., & Coste, J. (2016). The Mini-OAKHQOL for knee and hip osteoarthritis quality of life was obtained following recent shortening guidelines. Journal of Clinical Epidemiology, 69, 70–78. https://doi.org/10.1016/j.jclinepi.2015.06.010.

    Article  PubMed  Google Scholar 

  8. Greenwood, M. C., Hakim, A. J., Carson, E., & Doyle, D. V. (2006). Touch-screen computer systems in the rheumatology clinic offer a reliable and user-friendly means of collecting quality-of-life and outcome data from patients with rheumatoid arthritis. Rheumatology, 45(1), 66–71. https://doi.org/10.1093/rheumatology/kei100.

    Article  CAS  PubMed  Google Scholar 

  9. Salaffi, F., Gasparini, S., & Grassi, W. (2009). The use of computer touch-screen technology for the collection of patient-reported outcome data in rheumatoid arthritis: Comparison with standardized paper questionnaires. Clinical and Experimental Rheumatology, 27(3), 459–468.

    CAS  PubMed  Google Scholar 

  10. Gwaltney, C. J., Shields, A. L., & Shiffman, S. (2008). Equivalence of electronic and paper-and-pencil administration of patient-reported outcome measures: A meta-analytic review. Value in Health, 11(2), 322–333. https://doi.org/10.1111/j.1524-4733.2007.00231.x.

    Article  PubMed  Google Scholar 

  11. Coons, S. J., Gwaltney, C. J., Hays, R. D., Lundy, J. J., Sloan, J. A., Revicki, D. A., et al. (2009). Recommendations on evidence needed to support measurement equivalence between electronic and paper-based patient-reported outcome (PRO) measures: ISPOR ePRO good research practices task force report. Value in Health, 12(4), 419–429. https://doi.org/10.1111/j.1524-4733.2008.00470.x.

    Article  PubMed  Google Scholar 

  12. Spangenberg, L., Glaesmer, H., Boecker, M., & Forkmann, T. (2015). Differences in Patient Health Questionnaire and Aachen Depression Item Bank scores between tablet versus paper-and-pencil administration. Quality of Life Research, 24(12), 3023–3032. https://doi.org/10.1007/s11136-015-1040-5.

    Article  PubMed  Google Scholar 

  13. Viswanathan, M. (2005). Measurement error and research design. SAGE.

  14. Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory. SAGE.

  15. Guillemin, F., Rat, A.-C., Roux, C. H., Fautrel, B., Mazieres, B., Chevalier, X., et al. (2012). The KHOALA cohort of knee and hip osteoarthritis in France. Joint Bone Spine, 79(6), 597–603. https://doi.org/10.1016/j.jbspin.2012.03.011.

    Article  PubMed  Google Scholar 

  16. McHorney, C. A., & Tarlov, A. R. (1995). Individual-patient monitoring in clinical practice: are available health status surveys adequate? Quality of Life Research, 4(4), 293–307.

    Article  CAS  PubMed  Google Scholar 

  17. Karin Schermelleh-Engel, H. M. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, 8(8), 23–74.

    Google Scholar 

  18. Petrillo, J., Cano, S. J., McLeod, L. D., & Coon, C. D. (2015). Using classical test theory, item response theory, and Rasch measurement theory to evaluate patient-reported outcome measures: A comparison of worked examples. Value in Health, 18(1), 25–34. https://doi.org/10.1016/j.jval.2014.10.005.

    Article  PubMed  Google Scholar 

  19. Fang, W.-H., Huang, G.-S., Chang, H.-F., Chen, C.-Y., Kang, C.-Y., Wang, C.-C., et al. (2015). Gender differences between WOMAC index scores, health-related quality of life and physical performance in an elderly Taiwanese population with knee osteoarthritis. British Medical Journal Open, 5(9), e008542. https://doi.org/10.1136/bmjopen-2015-008542.

    Article  Google Scholar 

  20. Gautier, A., Kubiak, C., & Collin, J.-F. (2005). Qualité de vie: une évaluation positive. Baromètre santé, 2005, 45–64.

    Google Scholar 

  21. Kovac, S. H., Mikuls, T. R., Mudano, A., & Saag, K. G. (2006). Health-related quality of life among self-reported arthritis sufferers: Effects of race/ethnicity and residence. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 15(3), 451–460. https://doi.org/10.1007/s11136-005-3213-0.

    Article  Google Scholar 

  22. Kawano, M. M., Araújo, I. L. A., Castro, M. C., & Matos, M. A. (2015). Assessment of quality of life in patients with knee osteoarthritis. Acta Ortopedica Brasileira, 23(6), 307–310. https://doi.org/10.1590/1413-785220152306150596.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bindawas, S. M., Vennu, V., & Al Snih, S. (2015). Differences in health-related quality of life among subjects with frequent bilateral or unilateral knee pain: Data from the Osteoarthritis Initiative Study. The Journal of Orthopaedic and Sports Physical Therapy, 45(2), 128–136. https://doi.org/10.2519/jospt.2015.5123.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Perrot, S., & Bertin, P. (2013). “Feeling better” or “feeling well” in usual care of hip and knee osteoarthritis pain: Determination of cutoff points for patient acceptable symptom state (PASS) and minimal clinically important improvement (MCII) at rest and on movement in a national multicenter cohort study of 2414 patients with painful osteoarthritis. Pain, 154(2), 248–256. https://doi.org/10.1016/j.pain.2012.10.017.

    Article  PubMed  Google Scholar 

  25. Tennant, A., & Conaghan, P. G. (2007). The Rasch measurement model in rheumatology: What is it and why use it? When should it be applied, and what should one look for in a Rasch paper? Arthritis & Rheumatism, 57(8), 1358–1362. https://doi.org/10.1002/art.23108.

    Article  Google Scholar 

  26. Christensen, K. B., Kreiner, S., & Mesbah, M. (2013). Rasch models in health. Wiley.

  27. Linacre, J. M. (2002). What do infit and outfit, mean-square and standardized mean? Rasch Measurement Transactions. 16(2), 878

    Google Scholar 

  28. Tennant, A., & Pallant, J. F. (2007). DIF matters: A practical approach to test if differential item functioning makes a difference. Rasch Measurement Transactions, 20, 1082–1084.

    Google Scholar 

  29. Tennant, A. (2017). A matter of convergence: Classical and modern approaches to scale development. Perceived Health and Adaptation in Chronic Disease 1, 92–108. https://doi.org/10.1201/9781315155074-11

    Article  Google Scholar 

  30. Christensen, K. B., Makransky, G., & Horton, M. (2017). Critical values for Yen’s Q 3: Identification of local dependence in the Rasch model using residual correlations. Applied Psychological Measurement, 41(3), 178–194. https://doi.org/10.1177/0146621616677520.

    Article  PubMed  Google Scholar 

  31. Terwee, C. B., Bot, S. D. M., de Boer, M. R., van der Windt, D. A. W. M., Knol, D. L., Dekker, J., et al. (2007). Quality criteria were proposed for measurement properties of health status questionnaires. Journal of Clinical Epidemiology, 60(1), 34–42. https://doi.org/10.1016/j.jclinepi.2006.03.012.

    Article  PubMed  Google Scholar 

  32. Mokkink, L. B., Terwee, C. B., Patrick, D. L., Alonso, J., Stratford, P. W., Knol, D. L., et al. (2009). The COSMIN checklist manual. Amsterdam: VU University Medical Centre. Retrieved from http://www.cosmin.nl/images/upload/files/COSMIN%20checklist%20manual%20v9.pdf.

  33. Linacre, J. M. (2002). Optimizing rating scale category effectiveness. Journal of Applied Measurement, 3(1), 85–106.

    PubMed  Google Scholar 

  34. Smith, A. B., Rush, R., Fallowfield, L. J., Velikova, G., & Sharpe, M. (2008). Rasch fit statistics and sample size considerations for polytomous data. BMC Medical Research Methodology, 8(1), 33. https://doi.org/10.1186/1471-2288-8-33.

    Article  PubMed  PubMed Central  Google Scholar 

  35. He, Q., & Wheadon, C. (2012). The effect of sample size on item parameter estimation for the partial credit model. Retrieved from http://cerp.aqa.org.uk/sites/default/files/pdf_upload/CERP_RP_QH_11122008.pdf.

  36. Zwick, R. (2012). A review of ETS Differential Item Functioning Assessment procedures: Flagging rules, minimum sample size requirements and criterion refinement. ETS Research Report Series, 2012(1), i-30. https://doi.org/10.1002/j.2333-8504.2012.tb02290.x.

    Article  Google Scholar 

  37. Luckett, T., Butow, P. N., & King, M. T. (2009). Improving patient outcomes through the routine use of patient-reported data in cancer clinics: future directions. Psycho-Oncology, 18(11), 1129–1138. https://doi.org/10.1002/pon.1545.

    Article  CAS  PubMed  Google Scholar 

  38. Bennett, A. V., Jensen, R. E., & Basch, E. (2012). Electronic patient-reported outcome systems in oncology clinical practice. CA: A Cancer Journal for Clinicians, 62(5), 337–347. https://doi.org/10.3322/caac.21150.

    Article  Google Scholar 

  39. Velikova, G., Booth, L., Smith, A. B., Brown, P. M., Lynch, P., Brown, J. M., & Selby, P. J. (2004). Measuring quality of life in routine oncology practice improves communication and patient well-being: A randomized controlled trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 22(4), 714–724. https://doi.org/10.1200/JCO.2004.06.078.

    Article  Google Scholar 

  40. Hilarius, D. L., Kloeg, P. H., Gundy, C. M., & Aaronson, N. K. (2008). Use of health-related quality-of-life assessments in daily clinical oncology nursing practice: A community hospital-based intervention study. Cancer, 113(3), 628–637. https://doi.org/10.1002/cncr.23623.

    Article  PubMed  Google Scholar 

  41. Varricchio, C. G., & Ferrans, C. E. (2010). Quality of life assessments in clinical practice. Seminars in Oncology Nursing, 26(1), 12–17. https://doi.org/10.1016/j.soncn.2009.11.003.

    Article  PubMed  Google Scholar 

  42. Aaronson, N. K., & Snyder, C. (2008). Using patient-reported outcomes in clinical practice: Proceedings of an International Society of Quality of Life Research conference. Quality of Life Research, 17(10), 1295–1295. https://doi.org/10.1007/s11136-008-9422-6.

    Article  PubMed  Google Scholar 

  43. Barton, J. L., & Katz, P. (2016). The patient experience: Patient-reported outcomes in rheumatology. Rheumatic Diseases Clinics of North America, 42(2), xv–xvi. https://doi.org/10.1016/j.rdc.2016.02.001.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all investigators who recruited participants, the Agence A4 for study coordination, and the members of the scientific committee.

Funding

The study was funded by unrestricted grants from Expanscience. Opinions expressed in the present article are those of the authors and do not necessarily reflect those of the sponsors. The study sponsors did not take part in the design study, data collection, analysis or interpretation, writing of the report, or the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maud Wieczorek.

Ethics declarations

Conflict of interest

Maud Wieczorek, Christine Rotonda, Jonathan Epstein, Francis Guillemin, and Anne-Christine Rat declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wieczorek, M., Rotonda, C., Epstein, J. et al. Can the e-OAKHQOL be an alternative to measure health-related quality of life in knee osteoarthritis?. Qual Life Res 27, 2731–2743 (2018). https://doi.org/10.1007/s11136-018-1914-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-018-1914-4

Keywords

Navigation