Quality of Life Research

, Volume 27, Issue 7, pp 1885–1891 | Cite as

PROMIS®-29 v2.0 profile physical and mental health summary scores

  • Ron D. Hays
  • Karen L. Spritzer
  • Benjamin D. Schalet
  • David Cella



The PROMIS-29 v2.0 profile assesses pain intensity using a single 0–10 numeric rating item and seven health domains (physical function, fatigue, pain interference, depressive symptoms, anxiety, ability to participate in social roles and activities, and sleep disturbance) using four items per domain. This paper describes the development of physical and mental health summary scores for the PROMIS-29 v2.0.


We conducted factor analyses of PROMIS-29 scales on data collected from two internet panels (n = 3000 and 2000).


Confirmatory factor analyses provided support for a physical health factor defined by physical function, pain (interference and intensity), and ability to participate in social roles and activities, and a mental health factor defined primarily by emotional distress (anxiety and depressive symptoms). Reliabilities for these two summary scores were 0.98 (physical health) and 0.97 (mental health). Correlations of the PROMIS-29 v2.0 physical and mental health summary scores with chronic conditions and other health-related quality of life measures were consistent with a priori hypotheses.


This study develops and provides preliminary evidence supporting the reliability and validity of PROMIS-29 v2.0 physical and mental health summary scores that can be used in future studies to assess impacts of health care interventions and track changes in health over time. Further evaluation of these and alternative summary measures is recommended.


Physical health Mental health Patient-reported PROMIS® PROMIS®-29 profile 



This research was supported in part through the National Cancer Institute (1U2-CCA186878-01). Ron D. Hays was also supported by the National Institute on Aging (P30-AG021684).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11136_2018_1842_MOESM1_ESM.docx (52 kb)
Supplementary material 1 (DOCX 51 KB)


  1. 1.
    Cella, D., Riley, W., Stone, A., Rothrock, N., Reeve, B., Young, S., et al. (2010). Initial item banks and first wave testing of the patient-reported outcomes measurement information system (PROMIS) network: 2005–2008. Journal of Clinical Epidemiology, 63(11), 1179–1194.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hinami, K., Smith, J., Deamant, C., DuBeshler, K., & Trick, W. (2015). When do patient-reported outcome measures inform readmission risk? Journal of Hospital Medicine, 10, 294–300.CrossRefPubMedGoogle Scholar
  3. 3.
    DeSalvo, K. B., Bloser, N., Reynolds, K., He, J., & Muntner, P. J. (2006). Mortality prediction with a single general self-rated health question. A meta-analysis. Journal of General Internal Medicine, 21(3), 267–275.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Han, P. K. J., Lee, M., Reeve, B. B., Mariotto, A. B., Wang, Z., Hays, R. D., et al. (2012). Development of a prognostic model for six-month mortality in older adults with declining health. Journal of Pain and Symptom Management, 43, 527–539.CrossRefPubMedGoogle Scholar
  5. 5.
    Choi, S. W., Reise, S. P., Pilkonis, P. A., Hays, R. D., & Cella, D. (2010). Efficiency of static and computer adaptive short forms compared to full-length measures of depressive symptoms. Quality of Life Research, 19, 125–136.CrossRefPubMedGoogle Scholar
  6. 6.
    Hays, R. D., Spritzer, K. L., Fries, J. F., & Krishnan, E. (2013). Responsiveness and minimally important difference for the patient-reported outcomes measurement and information system (PROMIS) 20-item physical functioning short-form in a prospective observational study of rheumatoid arthritis. Annals of the Rheumatic Diseases, 74(1), 104–107.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hinchcliff, M. E., Beaumont, J. L., Carns, M. A., Podlusky, S., Thavarajah, K., Varga, et al. (2015). Longitudinal evaluation of PROMIS-29 and FACIT-dyspnea short forms in systemic sclerosis. Journal of Rheumatology, 42(1), 64–72.CrossRefPubMedGoogle Scholar
  8. 8.
    Katz, P., Pedro, S., & Michaud, K. (2017). Performance of the patient-reported outcomes measurement information system 29-item profile in rheumatoid arthritis, osteoarthritis, fibromyalgia, and systemic lupus erythematosus. Arthritis Care and Research, 69(8), 1312–1321.CrossRefPubMedGoogle Scholar
  9. 9.
    Fisher, F., Gibbons, C., Coste, J., Valderas, J. M., Rose, M., & Leplège, A. (2018). Measurement invariance and general population reference values of the PROMIS profile 29 in the UK, France, and Germany. Quality of Life Research, PubMedGoogle Scholar
  10. 10.
    Rose, M., Bjorner, J. B., Gandek, B., Bruce, B., Fries, J. F., & Ware, J. E. (2014). The PROMIS physical function item bank was calibrated to a standardized metric and shown to improve measurement efficiency. Journal of Clinical Epidemiology, 67(5), 516–526.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lai, J.-S., Cella, D., Choi, S., et al. (2011). How item banks and their application can influence measurement practice in rehabilitation medicine: A PROMIS fatigue item bank example. Archives of Physical Medicine and Rehabilitation, 92(10), S20-S27.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Amtmann, D., Cook, K. F., Jensen, M. P., et al. (2010). Development of a PROMIS item bank to measure pain interference. Pain, 150(1), 173–182.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pilkonis, P. A., Choi, S. W., Reise, S. P., Stover, A. M., Riley, W. T., & Cella, D. (2011). Item banks for measuring emotional distress from the patient-reported outcomes measurement information system (PROMIS®): Depression, anxiety, and anger. Assessment, 18(3), 263–283.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hahn, E. A., DeWalt, D. A., Bode, R. K., et al. (2014). New English and Spanish social health measures will facilitate evaluating health determinants. Health Psychology, 33(5), 490–499.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Buysse, D. J., Yu, L., Moul, D. E., et al. (2010). Development and validation of patient-reported outcome measures for sleep disturbance and sleep-related impairments. Sleep, 33(6), 781–792.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hays, R. D., Alonso, J., & Coons, S. J. (1998). Possibilities for summarizing health-related quality of life when using a profile instrument. In M. Staquet, R. Hays & P. Fayers (Eds.), Quality of life assessment in clinical trials: Methods and practice (pp. 143–153). Oxford: Oxford University Press.Google Scholar
  17. 17.
    Farivar, S. S., Cunningham, W. E., & Hays, R. D. (2007). Correlated physical and mental health summary scores for the SF-36 and SF-12 health survey, V. 1. Health and Quality of Life Outcomes, 5:54.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hays, R. D., Marshall, G. N., Wang, E. Y. I., & Sherbourne, C. D. (1994). Four-year cross-lagged associations between physical and mental health in the medical outcomes study. Journal of Consulting and Clinical Psychology, 62, 441–449.CrossRefPubMedGoogle Scholar
  19. 19.
    Hays, R. D., & Stewart, A. L. (1990). The structure of self-reported health in chronic disease patients. Psychological Assessment, 2, 22–30.CrossRefGoogle Scholar
  20. 20.
    Carle, A. C., Riley, W., Hays, R. D., et al. (2015). Confirmatory factor analysis of the patient reported outcomes measurement information system (PROMIS) adult domain framework using item response theory scores. Medical Care, 53, 894–900.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Op4g website. Retrieved January 2, 2018 from
  22. 22.
    Butt, Z., Peipert, J., Webster, K., Chen, C., & Cella, D. (2013). General population norms for the functional assessment of cancer therapy-kidney symptoms index (FKSI). Cancer, 119(2), 429–437.CrossRefPubMedGoogle Scholar
  23. 23.
    Feeny, D., Furlong, W., Boyle, M., et al. (1995). Multi-attribute health status classification systems. Pharmacoeconomics, 7, 490–502.CrossRefPubMedGoogle Scholar
  24. 24.
    Hays, R. D., Bjorner, J., Revicki, D. A., Spritzer, K., & Cella, D. (2009). Development of physical and mental health summary scores from the patient-reported outcomes measurement information system (PROMIS) global items. Quality of Life Research, 18, 873–880.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Revicki, D. A., Kawata, A. K., Harnam, N., Chen, W.-H., Hays, R. D., & Cella, D. (2009). Predicting EuroQol (EQ-5D) scores from the patient-reported outcomes measurement information system (PROMIS) global items and domain item banks in a United States sample. Quality of Life Research, 18, 783–791.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ware, J. E. (2000). SF-36 health survey update. Spine, 25, 3130–3139.CrossRefPubMedGoogle Scholar
  27. 27.
    Brazier, J., Roberts, J., & Deverill, M. (2002). The estimation of a preference-based measure of health from the SF-36. Journal of Health Economics, 21(2), 271–292.CrossRefPubMedGoogle Scholar
  28. 28.
    Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334.CrossRefGoogle Scholar
  29. 29.
    Rummel, R. J. (1970). Applied factor analysis. Evanston, IL: Northwestern University Press.Google Scholar
  30. 30.
    Hendrickson, A. E., & White, P. (1964). Promax: A quick method for rotation to oblique simple structure. British Journal of Statistical Psychology, 17, 65–70.CrossRefGoogle Scholar
  31. 31.
    Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.CrossRefGoogle Scholar
  32. 32.
    Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus user’s guide, 7th edn. Los Angeles, CA: Muthén & MuthénGoogle Scholar
  33. 33.
    Mosier, C. I. (1943). On the reliability of a weighted composite. Psychometrika, 8(3), 161–168.CrossRefGoogle Scholar
  34. 34.
    Hays, R. D., Revicki, D. A., Feeny, D., Fayers, P., Spritzer, K. L., & Cella, D. (2016). Using linear equating to map PROMIS global health items and the PROMIS-29 V. 2 Profile measure to the health utilities index—mark 3. Pharmacoeconomics, 34, 1015–1022.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Taft, C., Karlsson, J., & Sullivan, M. (2001). Do SF-36 summary component scores accurately summarize subscale scores? Quality of Life Research, 10, 395–404.CrossRefPubMedGoogle Scholar
  36. 36.
    Hays, R. D., Schalet, B. D., Spritzer, K. L., & Cella, D. (2017). Two-item PROMIS global physical and mental health scales. Journal of Patient-Reported Outcomes, 1, 2.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Barile, J. P., Reeve, B. B., Smith, A. W., Zack, M. M., Mitchell, S. A., Kobau, R., et al. (2013). Monitoring population health for healthy people 2020: Evaluation of the NIH PROMIS® global health, CDC healthy days, and satisfaction with life instruments. Quality of Life Research, 22(6), 1201–1211.CrossRefPubMedGoogle Scholar
  38. 38.
    Simon, G. E., Revicki, D. A., Grothaus, L., et al. (1998). SF-36 summary scores: Are physical and mental health truly distinct? Medical Care, 36, 567–572.CrossRefPubMedGoogle Scholar
  39. 39.
    HealthMeasures website. Retrieved January 2, 2018 from
  40. 40.
    Craig, B. M., Reeve, B. B., Brown, P. M., Cella, D., Hays, R. D., Lipscomb, J., Pickard, A. S., & Revicki, D. A. (2014). US valuation of health outcomes measured using the PROMIS-29. Value in Health, 17(8), 846–853.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hanmer, J., Cella, D., Feeny, D., Fischhoff, B., Hays, R. D., Hess, R., et al. (2017). Selection of key health domains from PROMIS® for a generic preference-based scoring system. Quality of Life Research, 26, 3377–3385CrossRefGoogle Scholar
  42. 42.
    Hanmer, J., Feeny, D., Fischoff, B., Hays, R. D., Hess, R., Pilkonis, P., et al. (2015). The PROMIS of QALYs. Health and Quality of Life Outcomes, 13, 122.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of General Internal Medicine and Health Services ResearchDavid Geffen School of Medicine at UCLALos AngelesUSA
  2. 2.Department of Medical Social Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoUSA

Personalised recommendations