A method to create a standardized generic and condition-specific patient-reported outcome measure for patient care and healthcare improvement

Abstract

Purpose

Patient-reported outcome measures (PROMs), which are generic or condition-specific, are used for a number of reasons, including clinical care, clinical trials, and in national-level efforts to monitor the quality of health care delivery. Creating PROMs that meet different purposes without overburdening patients, healthcare systems, providers, and data systems is paramount. The objective of this study was to test a generalizable method to incorporate condition-specific issues into generic PROM measures as a first step to producing PROMs that efficiently provide a standardized score. This paper outlines the method and preliminary findings focused on a PROM for osteoarthritis of the knee (OA-K).

Methods

We used a mixed-methods approach and PROMIS® measures to test development of a combined generic and OA-K-specific PROM. Qualitative methods included patient focus groups and provider interviews to identify impacts of OA-K important to patients. We then conducted a thematic analysis and an item gap analysis: identified areas covered by existing generic PROMIS measures, identified “gap” areas not covered, compared gap areas to legacy instruments to verify relevance, and developed new items to address gaps. We then performed cognitive testing on new items and drafted an OA-K-specific instrument based on findings.

Results

We identified 52 existing PROMIS items and developed 24 new items across 14 domains.

Conclusions

We developed a process for creating condition-specific instruments that bridge gaps in existing generic measures. If successful, the methodology will create instruments that efficiently gather the patient’s perspective while allowing health systems, researchers, and other interested parties to monitor and compare outcomes over time, conditions, and populations.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Lavallee, D. C., Chenok, K. E., Love, R. M., Petersen, C., Holve, E., Segal, C. D., et al. (2016). Incorporating patient-reported outcomes into health care to engage patients and enhance care. Health Affairs, 35(4), 575–582.

    Article  PubMed  Google Scholar 

  2. 2.

    Porter, M. E., Larsson, S., & Lee, T. H. (2016). Standardizing patient outcomes measurement. New England Journal of Medicine, 374(6), 504–506.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Fitzpatrick, R., Davey, C., Buxton, M., & Jones, D. (1998). Evaluating patient-based outcome measures for use in clinical trials. Health Technology Assessment, 14, 1–74.

    Article  Google Scholar 

  4. 4.

    National health service England. Patient reported outcome measures (PROMs). 2016. https://www.england.nhs.uk/statistics/statistical-work-areas/proms/. Accessed Oct 4 2016.

  5. 5.

    Dawson, J., Doll, H., Fitzpatrick, R., Jenkinson, C., & Carr, A. J. (2010). The routine use of patient reported outcome measures in healthcare settings. British Medical Journal, 340, c186.

    Article  PubMed  Google Scholar 

  6. 6.

    Black, N. (2013). Patient reported outcome measures could help transform healthcare. British Medical Journal, 346(January), f167.

    Article  PubMed  Google Scholar 

  7. 7.

    Smith, P. C., & Street, A. D. (2013). On the uses of routine patient-reported health outcome data. Health Economics, 22, 119–131.

    Article  PubMed  Google Scholar 

  8. 8.

    Cella, D., Hahn, E. A., Jensen, S., Butt, Z., Nowinski, C. J., Rothrock, N., et al. (2015). Patient-reported outcomes in performance measurement. NC: RTI Press.

    Google Scholar 

  9. 9.

    Owolabi, M. O. (2010). Which is more valid for stroke patients: generic or stroke-specific quality of life measures? Neuroepidemiology, 34(1), 8–12.

    Article  PubMed  Google Scholar 

  10. 10.

    Ware, J. E., Gandek, B., & Allison, J. (2016). The validity of disease-specific quality of life attributions among adults with multiple chronic conditions. International Journal of Statistics in Medical Research, 5(1), 17–40.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Flynn, K. E., Dew, M. A., Lin, L., Fawzy, M., Graham, F. L., Hahn, E. A., et al. (2015). Reliability and construct validity of PROMIS® measures for patients with heart failure who undergo heart transplant. Quality of Life Research, 24(11), 2591–2599.

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Rolfson, O., Wissig, S., van Maasakkers, L., Stowell, C., Ackerman, I., Ayers, D., et al. (2016). Defining an international standard set of outcome measures for patients with hip or knee osteoarthritis: consensus of the International Consortium for Health Outcomes Measurement Hip and Knee Osteoarthritis Working Group. Arthritis Care Research, 68(11), 1631–1639.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Cella, D., & Nowinski, C. J. (2002). Measuring quality of life in chronic illness: the functional assessment of chronic illness therapy measurement system. Archives of Physical Medicine Rehabilitation, 83(12 Suppl 2), S10–S17.

    Article  PubMed  Google Scholar 

  14. 14.

    Bergland, A., Thorsen, H., & Kåresen, R. (2011). Association between generic and disease-specific quality of life questionnaires and mobility and balance among women with osteoporosis and vertebral fractures. Aging Clinical and Experimental Research, 23(4), 296–303.

    Article  PubMed  Google Scholar 

  15. 15.

    Fitzsimmons, D., Johnson, C. D., George, S., Payne, S., Sandberg, A. A., Bassi, C., et al. (1999). Development of a disease specific quality of life (QoL) questionnaire module to supplement the EORTC core cancer QoL questionnaire, the QLQ-C30 in patients with pancreatic cancer. European Journal of Cancer, 35(6), 939–941.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Freeman, J., Hobart, J. C., & Thompson, J. (2001). Does adding MS-specific items to a generic measure (the SF-36) improve measurement? Neurology, 57(1), 68–74.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Webster, K., Cella, D., & Yost, K. (2003). The functional assessment of chronic illness therapy (FACIT) measurement system: properties, applications, and interpretation. Health Quality of Life Outcomes, 1, 79.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Cella, D., Yount, S., Rothrock, N., Gershon, R., Cook, K., Reeve, B., et al. (2007). The Patient-reported outcomes measurement information system (PROMIS): progress of an NIH roadmap cooperative group during its first 2 years. Medical Care, 45(5 Suppl 1), S3–S11.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    DeWalt DA, Rothrock N, Yount S, Stone AA, PROMIS Cooperative Group. (2007). Evaluation of item candidates: the PROMIS qualitative item review. Medical Care, 45(5 Suppl 1), S12–S20.

    Google Scholar 

  20. 20.

    Cella, D., Riley, W., Stone, A., Rothrock, N., Reeve, B., Yount, S., et al. (2010). The patient-reported outcomes measurement information system (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. Journal of Clinical Epidemiology, 63(11), 1179–1194.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Beckmann, J. T., Hung, M., Bounsanga, J., Wylie, J. D., Granger, E. K., & Tashjian, R. Z. (2015). Psychometric evaluation of the PROMIS Physical Function Computerized Adaptive Test in comparison to the American Shoulder and Elbow Surgeons score and Simple Shoulder Test in patients with rotator cuff disease. Journal of Shoulder and Elbow Surgery, 24(12), 1961–1967.

    Article  PubMed  Google Scholar 

  22. 22.

    Fries, J. F., Cella, D., Rose, M., Krishnan, E., & Bruce, B. (2009). Progress in assessing physical function in arthritis: PROMIS short forms and computerized adaptive testing. Journal of Rheumatology, 36(9), 2061–2066.

    Article  PubMed  Google Scholar 

  23. 23.

    Varni, J. W., Stucky, B. D., Thissen, D., Dewitt, E. M., Irwin, D. E., Lai, J. S., et al. (2010). PROMIS pediatric pain interference scale: an item response theory analysis of the pediatric pain item bank. Journal of Pain, 11(11), 1109–1119.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Schifferdecker, K. E., & Reed, V. A. (2009). Using mixed methods research in medical education: basic guidelines for researchers. Medical Education, 43(7), 637–644.

    Article  PubMed  Google Scholar 

  25. 25.

    Forrest, C. B., Bevans, K. B., Pratiwadi, R., Moon, J., Teneralli, R. E., Minton, J. M., et al. (2014). Development of the PROMIS pediatric global health (PGH-7) measure. Quality of Life Research, 23(4), 1221–1231.

    Article  PubMed  Google Scholar 

  26. 26.

    Patrick, D. L., Burke, L. B., Gwaltney, C. J., Leidy, N. K., Martin, M. L., Molsen, E., et al. (2011). Content validity—establishing and reporting the evidence in newly developed patient-reported outcomes (PRO) instruments for medical product evaluation: ISPOR PRO good research practices task force report: part 1—eliciting concepts for a new PRO instrument. Value in Health, 14(8), 967–977.

    Article  PubMed  Google Scholar 

  27. 27.

    Patrick, D. L., Burke, L. B., Gwaltney, C. J., Leidy, N. K., Martin, M. L., Molsen, E., et al. (2011). Content validity—establishing and reporting the evidence in newly developed patient-reported outcomes (PRO) instruments for medical product evaluation: ISPOR PRO good research practices task force report: part 2—assessing respondent understanding. Value in Health, 14(8), 978–988.

    Article  PubMed  Google Scholar 

  28. 28.

    Boyatzis, R. E. (1998). Transforming qualitative information: Thematic analysis and code development. Thousand Oaks: Sage Publications.

    Google Scholar 

  29. 29.

    Sociocultural Research Consultants L. (2015). Dedoose Version 6.1.18, web application for managing, analyzing, and presenting qualitative and mixed method research data. Los Angeles: SocioCultural Research Consultants, LLC (www.dedoose.com).

  30. 30.

    Gershon, R. C., Rothrock, N., Hanrahan, R., Bass, M., & Cella, D. (2010). The use of PROMIS and assessment center to deliver patient-reported outcome measures in clinical research. Journal of Applied Measures, 11(3), 304–314.

    Google Scholar 

  31. 31.

    Cella, D., Riley, W., Stone, A., Rothrock, N., Reeve, B., Yount, S., et al. (2011). Initial adult health item banks and first wave testing of the patient-reported outcomes measurement information system (PROMIS) network: 2005–2008. Journal of Clinical Epidemiology, 63(11), 1179–1194.

    Article  Google Scholar 

  32. 32.

    Willis, G., Reeve, B.B., Barofsky, I. (2005). The use of cognitive interviewing techniques in quality of life and patient-reported outcomes assessment. Outcomes assessment in cancer: measures, methods and application, 610–622.

  33. 33.

    Correia, H. (2015). Translatability review for the national children’s study: guidelines and process. Chicago.

  34. 34.

    Cook, K. F., Bamer, A. M., Roddey, T. S., Kraft, G. H., Kim, J., & Amtmann, D. (2012). A PROMIS fatigue short form for use by individuals who have multiple sclerosis. Quality of Life Research, 21(6), 1021–1030.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Patient-centered Outcomes Research Institute contract number ME-1303-5928. The authors wish to thank their valuable research partners in this work: Drs. Gene Nelson, Jill Gelow, Lynn Marshall, Taressa Fraze and Faraz Ahmad; and Brendin Beaulieu-Jones and Zabin Patel. We are especially grateful for the input of our patient and provider participants and for the guidance and advice from our Patient and Family Advisory Committee: Annette Jo Giarrante, Janet Trzaska, David Swanz, Jeff Gardner, Carol DuBois, Roger Arend and Linda Wilkinson.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karen E. Schifferdecker.

Appendix

Appendix

New and existing PROMIS items for OAK, by category and domain

See Tables 3, 4 and 5.

Table 3 Mental
Table 4 Physical
Table 5 Social

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schifferdecker, K.E., Yount, S.E., Kaiser, K. et al. A method to create a standardized generic and condition-specific patient-reported outcome measure for patient care and healthcare improvement. Qual Life Res 27, 367–378 (2018). https://doi.org/10.1007/s11136-017-1675-5

Download citation

Keywords

  • Patient-reported outcome measure
  • Healthcare quality
  • Mixed methods
  • Osteoarthritis of the knee