Skip to main content

Neonatal risk mortality scores as predictors for health-related quality of life of infants treated in NICU: a prospective cross-sectional study



To determine the relationship of Apgar scores, gestational age and neonatal risk mortality scores to health-related quality of life (HRQoL) for infants at the age of 8 months treated after birth in neonatal intensive care unit (NICU).


All surviving infants treated in two-third level NICUs in Rijeka, Croatia (from August 2013 to August 2014) were included in this prospective, cross-sectional study. For all neonates, the Score for Neonatal Acute Physiology (SNAP), SNAP with Perinatal Extension (SNAP-PE) and their simplified modifications (SNAP II and SNAP-PE II) were calculated. At the corrected age of 8 months, the Pediatric Quality of Life Questionnaire (PedsQL)—infant scale—was completed by parents of surviving infants. Multiple regression analysis was performed in order to assess the value of neonatal risk mortality scores, Apgar scores and gestational age as possible predictors of HRQoL, measured by questionnaire score.


A strong correlation has been found between SNAP and 5-min Apgar scores to HRQoL. A positive correlation was also found between gestational age and HRQoL.


SNAP and 5-min Apgar scores are important outcome indicators, can aid clinicians’ and parents’ decision making on the benefits and burdens of acute medical interventions and help determine quantities of medical treatment. Educated medical staff, effective and efficient medical treatment and a high quality of care which prevent adverse events in the first minute of life should be a priority in efforts to improve the future quality of life.

This is a preview of subscription content, access via your institution.


  1. 1.

    Villalonga-Olives, E., Kawachi, I., Almansa, J., Witte, C., Lange, B., Kiese-Himmel, C., et al. (2014). Pediatric health-related quality of life: A structural equation modeling approach. Public Library of Science One, 9(11), e113166.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Boss, R. D., Kinsman, H. I., & Donohue, P. K. (2012). Health-related quality of life for infants in the Neonatal Intensive Care Unit. Journal of Perinatology, 32(12), 901–906.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Bengoa, R., Kawar, R., Key, P., Leatherman, S., Massoud, R., & Sturno, P. (2006). Quality of care: A process for making strategic choices in health systems. Geneva: World Health Organization.

    Google Scholar 

  4. 4.

    Zeitlin, J., Manktelow, B. N., Piedvache, A., Cuttini, M., Boyle, E., van Heijst, A., et al. (2016). Use of evidence based practices to improve survival without severe morbidity for very preterm infants: Results from the EPICE population based cohort. BMJ. doi:10.1136/bmj.i2976.

    PubMed Central  Google Scholar 

  5. 5.

    Stoll, B. J., Hansen, N. I., Bell, E. F., Walsh, M. C., Waldemar, A., Carlo, W. A., et al. (2015). Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. The Journal of the American Medical Association, 314(10), 1039–1051.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Sankaran, K., Chien, L. Y., Walker, R., Seshia, M., & Ohlsson, A. (2002). Variations in mortality rates among Canadian Neonatal Intensive Care Units. Canadian Neonatal Network. Canadian Medical Association Journal, 166(2), 173–178.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Payot, A., & Barrington, K. J. (2011). The quality of life of young children and infants with chronic medical problems: Review of the literature. Current Problems in Pediatric and Adolescent Health Care, 41(4), 91–101.

    Article  PubMed  Google Scholar 

  8. 8.

    Patrick, S. W., Schumacher, R. E., & Davis, M. M. (2013). Methods of mortality risk adjustment in the NICU: A 20-year review. Pediatrics, 131(Suppl 1), S68–S74.

    Article  PubMed  Google Scholar 

  9. 9.

    Richardson, D. K., Gray, J. E., McCormick, M. C., Workman, K., & Goldmann, D. A. (1993). Score for neonatal acute physiology: A physiologic severity index for neonatal intensive care. Pediatrics, 91(3), 617–623.

    CAS  PubMed  Google Scholar 

  10. 10.

    Richardson, D. K., Phibbs, C. S., Gray, J. E., McCormick, M. C., Workman-Daniels, K., & Goldmann, D. A. (1993). Birth weight and illness severity: Independent predictors of neonatal mortality. Pediatrics, 91(5), 969–975.

    CAS  PubMed  Google Scholar 

  11. 11.

    Cockburn, F., Cooke, R., Gamsu, H., & The International Neonatal Network. (1993). The CRIB (clinical risk index for babies) score: A tool for assessing initial neonatal risk and comparing performance of Neonatal Intensive Care Units. Lancet, 342(8865), 193–198.

    Article  Google Scholar 

  12. 12.

    Richardson, D. K., Corcoran, J. D., Escobar, G. J., & Lee, S. K. (2001). SNAP-II and SNAPPE-II: Simplified newborn illness severity and mortality risk scores. The Journal of Pediatrics, 138(1), 92–100.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Parry, G., Tucker, J., Tarnow-Mordi, W., & UK Neonatal Staffing Study Collaborative Group. (2003). CRIB II: An update of the clinical risk index for babies score. Lancet, 361(9371), 1789–1791.

    Article  PubMed  Google Scholar 

  14. 14.

    Escobar, G. J., Shaheen, S. M., Breed, E. M., Botas, C., Greene, J. D., Yoshida, C. K., et al. (2004). Richardson score predicts short-term adverse respiratory outcomes in newborns ≥34 weeks gestation. The Journal of Pediatrics, 145(6), 754–760.

    Article  PubMed  Google Scholar 

  15. 15.

    De Felice, C., Toti, P., Parrini, S., Del Vecchio, A., Bagnoli, F., Latini, G., et al. (2005). Histologic chorioamnionitis and severity of illness in very low birth weight newborns. Pediatric Critical Care Medicine, 6(3), 298–302.

    Article  PubMed  Google Scholar 

  16. 16.

    Fortes Filho, J. B., Dill, J. C., Ishizaki, A., Aguiar, W. W., Silveira, R. C., & Procianoy, R. S. (2009). Score for Neonatal Acute Physiology and Perinatal Extension II as a predictor of retinopathy of prematurity: Study in 304 very-low-birth-weight preterm infants. Ophthalmologica, 223(3), 177–182.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Dammann, O., Naples, M., Bednarek, F., Shah, B., Kuban, K. C., O’Shea, T. M., et al. (2010). SNAP-II and SNAPPE-II and the risk of structural and functional brain disorders in extremely low gestational age newborns: The ELGAN study. Neonatology, 97(2), 71–82.

    Article  PubMed  Google Scholar 

  18. 18.

    Mattia, F. R., & deRegnier, R. A. (1998). Chronic physiologic instability is associated with neurodevelopmental morbidity at one and two years in extremely premature infants. Pediatrics, 102(3), E35.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Schiariti, V., Klassen, A. F., Houbé, J. S., Synnes, A., Lisonkova, S., & Lee, S. K. (2008). Perinatal characteristics and parents’ perspective of health status of NICU graduates born at term. Journal of Perinatology, 28(5), 368–376.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Bührer, C., Grimmer, I., Metze, B., & Obladen, M. (2000). The CRIB (clinical risk index for babies) score and neurodevelopmental impairment at one year corrected age in very low birth weight infants. Intensive Care Medicine, 26(3), 325–329.

    Article  PubMed  Google Scholar 

  21. 21.

    Fowlie, P. W., Tarnow-Mordi, W. O., Gould, C. R., & Strang, D. (1998). Predicting outcome in very low birthweight infants using an objective measure of illness severity and cranial ultrasound scanning. Archives of Disease in Childhood. Fetal and Neonatal Edition, 78(3), F175–F178.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Lago, P., Freato, F., Bettiol, T., Chiandetti, L., Vianello, A., & Zaramella, P. (1999). Is the CRIB score (clinical risk index for babies) a valid tool in predicting neurodevelopmental outcome in extremely low birth weight infants? Biology of the Neonate, 76(4), 220–227.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Lodha, A., Sauvé, R., Chen, S., Tang, S., & Christianson, H. (2009). Clinical risk index for babies score for the prediction of neurodevelopmental outcomes at 3 years of age in infants of very low birthweight. Developmental Medicine and Child Neurology, 51(11), 895–900.

    Article  PubMed  Google Scholar 

  24. 24.

    Iliodromiti, S., Mackay, D. F., Smith, G. C., Pell, J. P., & Nelson, S. M. (2014). Apgar score and the risk of cause-specific infant mortality: A population-based cohort study. Lancet, 384(9956), 1749–1755.

    Article  PubMed  Google Scholar 

  25. 25.

    Moster, D., Lie, R. T., & Markestad, T. (2002). Joint association of Apgar scores and early neonatal symptoms with minor disabilities at school age. Archives of Disease in Childhood. Fetal and Neonatal Edition, 86(1), F16–F21.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Odd, D. E., Rasmussen, F., Gunnell, D., Lewis, G., & Whitelaw, A. (2008). A cohort study of low Apgar scores and cognitive outcomes. Archives of Disease in Childhood. Fetal and Neonatal Edition, 93(2), F115–F120.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Stuart, A., Otterblad Olausson, P., & Källen, K. (2011). Apgar scores at 5 minutes after birth in relation to school performance at 16 years of age. Obstetrics and Gynecology. doi:10.1097/AOG.0b013e31822200eb.

    Google Scholar 

  28. 28.

    Ehrenstein, V., Pedersen, L., Grijota, M., Nielsen, G. L., Rothman, K. J., & Sørensen, H. T. (2009). Association of Apgar score at five minutes with long-term neurologic disability and cognitive function in a prevalence study of Danish conscripts. BMC Pregnancy and Childbirth. doi:10.1186/1471-2393-9-14.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Razaz, N., Boyce, W. T., Brownell, M., Jutte, D., Tremlett, H., Marrie, R. A., et al. (2016). Five-minute Apgar score as a marker for developmental vulnerability at 5 years of age. Archives of Disease in Childhood. Fetal and Neonatal Edition, 101(2), F114–F120.

    Article  PubMed  Google Scholar 

  30. 30.

    van der Pal-de Bruin, K. M., van der Pal, S. M., Verloove-Vanhorick, S. P., & Walther, F. J. (2015). Profiling the preterm or VLBW born adolescent; implications of the Dutch POPS cohort follow-up studies. Early Human Development, 91(2), 97–102.

    Article  PubMed  Google Scholar 

  31. 31.

    Stahlmann, N., Rapp, M., Herting, E., & Thyen, U. (2009). Outcome of extremely premature infants at early school age: Health-related quality of life and neurosensory, cognitive, and behavioral outcomes in a population-based sample in northern Germany. Neuropediatrics, 40(3), 112–119.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Baumann, N., Bartmann, P., & Wolke, D. (2016). Health-related quality of life into adulthood after very preterm birth. Pediatrics. doi:10.1542/peds.2015-3148.

    PubMed  Google Scholar 

  33. 33.

    Wolke, D., Chernova, J., Eryigit-Madzwamuse, S., Samara, M., Zwierzynska, K., & Petrou, S. (2013). Self and parent perspectives on health-related quality of life of adolescents born very preterm. The Journal of Pediatrics, 163(4), 1020–1026.e2.

    Article  PubMed  Google Scholar 

  34. 34.

    Serenius, F., Källén, K., Blennow, M., Ewald, U., Fellman, V., Holmström, G., et al. (2013). Neurodevelopmental outcome in extremely preterm infants at 2.5 years after active perinatal care in Sweden. The Journal of the American Medical Association, 309(17), 1810–1820.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Zwicker, J. G., & Harris, S. R. (2008). Quality of life of formerly preterm and very low birth weight infants from preschool age to adulthood: A systematic review. Pediatrics, 121(2), e366–e376.

    Article  PubMed  Google Scholar 

  36. 36.

    Vieira, M. E., & Linhares, M. B. (2016). Quality of life of individuals born preterm: A systematic review of assessment approaches. Quality of Life Research, 25(9), 2123–2139.

    Article  PubMed  Google Scholar 

  37. 37.

    Klassen, A. F., Landgraf, J. M., Lee, S. K., Barer, M., Raina, P., Chan, H. W., et al. (2003). Health related quality of life in 3 and 4 year old children and their parents: Preliminary findings about a new questionnaire. Health and Quality of Life Outcomes, 22(1), 81.

    Article  Google Scholar 

  38. 38.

    Fekkes, M., Theunissen, N. C., Brugman, E., Veen, S., Verrips, E. G., Koopman, H. M., et al. (2000). Development and psychometric evaluation of the TAPQOL: A health related quality of life instrument for 1–5-year-old children. Quality of Life Research, 9(8), 961–972.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Varni, J. W., Limbers, C. A., Neighbors, K., Schulz, K., Lieu, J. E., Heffer, R. W., et al. (2011). The PedsQL™ infant scales: Feasibility, internal consistency reliability, and validity in healthy and ill infants. Quality of Life Research, 20(1), 45–55.

    Article  PubMed  Google Scholar 

  40. 40.

    Caesar, R., Boyd, R. N., Colditz, P., Cioni, G., Ware, R. S., Salthouse, K., et al. (2016). Early prediction of typical outcome and mild developmental delay for prioritisation of service delivery for very preterm and very low birthweight infants: A study protocol. BMJ Open. doi:10.1136/bmjopen-2015-010726.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Rozance, P. J., & Hay, W. W. (2016). New approaches to management of neonatal hypoglycemia. Maternal Health, Neonatology and Perinatology. doi:10.1186/s40748-016-0031-z.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Brand, P. L., Molenaar, N. L., Kaaijk, C., & Wierenga, W. S. (2005). Neurodevelopmental outcome of hypoglycaemia in healthy, large for gestational age, term newborns. Archives of Disease in Childhood, 90(1), 78–81.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Resch, B., Neubauer, K., Hofer, N., Resch, E., Maurer, U., Haas, J., et al. (2012). Episodes of hypocarbia and early-onset sepsis are risk factors for cystic periventricular leukomalacia in the preterm infant. Early Human Development, 88(1), 27–31.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Hays, S. P., Smith, E. O., & Sunehag, A. L. (2006). Hyperglycemia is a risk factor for early death and morbidity in extremely low birth-weight infants. Pediatrics, 118(5), 1811–1818.

    Article  PubMed  Google Scholar 

  45. 45.

    Kao, L. S., Morris, B. H., Lally, K. P., Stewart, C. D., Huseby, V., & Kennedy, K. A. (2006). Hyperglycemia and morbidity and mortality in extremely low birth weight infants. Journal of Perinatology, 26(12), 730–736.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Alexandrou, G., Skiold, B., Karlen, J., Tessma, M. K., Norman, M., Adén, U., et al. (2010). Early hyperglycemia is a risk factor for death and white matter reduction in preterm infants. Pediatrics, 125(3), 584–591.

    Article  Google Scholar 

  47. 47.

    Dalton, J., Dechert, R. E., & Sarkar, S. (2015). Assessment of association between rapid fluctuations in serum sodium and intraventricular hemorrhage in hypernatremic preterm infants. American Journal of Perinatology, 32(8), 795–802.

    Article  PubMed  Google Scholar 

Download references


We would like to thank all family doctors and primary pediatricians who helped with the data collection and all the parents for their time to complete the questionnaire.

Author information



Corresponding author

Correspondence to K. Lah Tomulic.

Ethics declarations

Conflict of interest

Author Lah Tomulic Kristina M.Sc. declares that she has no conflict of interest. Author Mestrovic Julije Ph.D. declares that he has no conflict of interest. Author Zuvic Marta Ph.D. declares that she has no conflict of interest. Author Rubelj Karla declares that she has no conflict of interest. Author Peter Branimir M.Sc. declares that he has no conflict of interest. Author Bilic Cace Iva Ph.D. declares that she has no conflict of interest. Author Verbic Arijan declares that he has no conflict of interest.

Ethical approval

All procedures performed in study involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all parents/caregivers of participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lah Tomulic, K., Mestrovic, J., Zuvic, M. et al. Neonatal risk mortality scores as predictors for health-related quality of life of infants treated in NICU: a prospective cross-sectional study. Qual Life Res 26, 1361–1369 (2017).

Download citation


  • Health-related quality of life
  • Infant
  • Risk adjustment
  • Neonatal mortality