Quality of Life Research

, Volume 26, Issue 2, pp 455–465 | Cite as

Value redefined for inflammatory bowel disease patients: a choice-based conjoint analysis of patients’ preferences

  • Welmoed K. van Deen
  • Dominic Nguyen
  • Natalie E. Duran
  • Ellen Kane
  • Martijn G. H. van Oijen
  • Daniel W. Hommes
Article

Abstract

Purpose

Value-based healthcare is an upcoming field. The core idea is to evaluate care based on achieved outcomes divided by the costs. Unfortunately, the optimal way to evaluate outcomes is ill-defined. In this study, we aim to develop a single, preference based, outcome metric, which can be used to quantify overall health value in inflammatory bowel disease (IBD).

Methods

IBD patients filled out a choice-based conjoint (CBC) questionnaire in which patients chose preferable outcome scenarios with different levels of disease control (DC), quality of life (QoL), and productivity (Pr). A CBC analysis was performed to estimate the relative value of DC, QoL, and Pr. A patient-centered composite score was developed which was weighted based on the stated preferences.

Results

We included 210 IBD patients. Large differences in stated preferences were observed. Increases from low to intermediate outcome levels were valued more than increases from intermediate to high outcome levels. Overall, QoL was more important to patients than DC or Pr. Individual outcome scores were calculated based on the stated preferences. This score was significantly different from a score not weighted based on patient preferences in patients with active disease.

Conclusions

We showed the feasibility of creating a single outcome metric in IBD which incorporates patients’ values using a CBC. Because this metric changes significantly when weighted according to patients’ values, we propose that success in healthcare should be measured accordingly.

Keywords

Patient preferences Outcome measurement Value equation Value-based health care Inflammatory bowel diseases 

Supplementary material

11136_2016_1398_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 23 kb)

References

  1. 1.
    Porter, M. E., & Teisberg, E. O. (2004). Redefining competition in health care. Harvard Business Review, 82(6), 64–76.PubMedGoogle Scholar
  2. 2.
    de Lange, K. M., & Barrett, J. C. (2015). Understanding inflammatory bowel disease via immunogenetics. Journal of Autoimmunity. doi:10.1016/j.jaut.2015.07.013.PubMedGoogle Scholar
  3. 3.
    van Deen, W. K., van Oijen, M. G., Myers, K. D., Centeno, A., Howard, W., Choi, J. M., et al. (2014). A nationwide 2010–2012 analysis of U.S. health care utilization in inflammatory bowel diseases. Inflammatory Bowel Diseases, 20(10), 1747–1753. doi:10.1097/MIB.0000000000000139.CrossRefPubMedGoogle Scholar
  4. 4.
    Blumenthal, D., & Stremikis, K. (2013). Getting real about health care value. Harvard Business Review, Digital Article. https://hbr.org/2013/09/getting-real-about-health-care-value. Accessed 24 Aug 2016
  5. 5.
    American Gastroenterological Association. Performance Measures (2015). http://www.gastro.org/practice-management/quality/performance-measures. Accessed 14 October 2015.
  6. 6.
    Melmed, G. Y., & Siegel, C. A. (2013). Quality improvement in inflammatory bowel disease. Gastroenterol Hepatol (N Y), 9(5), 286–292.Google Scholar
  7. 7.
    Stacey, D., Legare, F., Col, N. F., Bennett, C. L., Barry, M. J., Eden, K. B., et al. (2014). Decision aids for people facing health treatment or screening decisions. Cochrane Database of Systematic Reviews, 1, Cd001431. doi:10.1002/14651858.CD001431.pub4.
  8. 8.
    US Department of Health and Human Services, Food and Drug Administration. Guidance for industry. Patient-Reported Outcome Measures: Use in Medical Product Development to Support Labeling Claims (December 2009).Google Scholar
  9. 9.
    Cella, D., Riley, W., Stone, A., Rothrock, N., Reeve, B., Yount, S., et al. (2010). The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. Journal of Clinical Epidemiology, 63(11), 1179–1194. doi:10.1016/j.jclinepi.2010.04.011.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    van Deen, W. K., Esrailian, E., & Hommes, D. W. (2015). Value-based health care for inflammatory bowel diseases. Journal of Crohn’s and Colitis, 9(5), 421–427. doi:10.1093/ecco-jcc/jjv036.CrossRefPubMedGoogle Scholar
  11. 11.
    Bridges, J. F., Hauber, A. B., Marshall, D., Lloyd, A., Prosser, L. A., Regier, D. A., et al. (2011). Conjoint analysis applications in health–a checklist: A report of the ISPOR good research practices for conjoint analysis task force. Value Health, 14(4), 403–413. doi:10.1016/j.jval.2010.11.013.CrossRefPubMedGoogle Scholar
  12. 12.
    van Deen, W. K., van der Meulen-de Jong, A. E., Parekh, N. K., Muyshondt, Y., Kane, E., Eimers, L., et al. (2015). Su1230 remote monitoring of IBD disease activity using the Mobile Health Index (mHI): A validation study. Gastroenterology, 148(4), S-446. doi:10.1016/S0016-5085(15)31501-8.CrossRefGoogle Scholar
  13. 13.
    Sawtooth Software, CBC/HB v5, Software for hierarchical Bayes estimation for CBC data. Manual. [Updated June 11, 2013]. https://www.sawtoothsoftware.com/download/techpap/CBCHB_Manual.pdf. Accessed 12 February 2016.
  14. 14.
    Orme, B. (2000). Hierarchical Bayes: Why all the attention? Quirk’s Marketing Research Review, 16, 58–63.Google Scholar
  15. 15.
    Wittink, D. R. (2000). Predictive validity of conjoint analysis. In Proceedings of the Sawtooth Software Conference, Sequim, WA, March 2000 (Vol. 2000, pp. 221–237).Google Scholar
  16. 16.
    Orme, B. (2010). Sample size issues for conjoint analysis. In B. Orme (Ed.), Getting started with conjoint analysis: Strategies for product design and pricing research. (2nd ed., pp. 57–66). Madison, WI: Research Publishers LLC.Google Scholar
  17. 17.
    Craig, B. M., Reeve, B. B., Brown, P. M., Cella, D., Hays, R. D., Lipscomb, J., et al. (2014). US valuation of health outcomes measured using the PROMIS-29. Value in Health, 17(8), 846–853. doi:10.1016/j.jval.2014.09.005.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Devlin, N., Shah, K.K., Feng, Y., Mulhern, B. & van Hout, B. (2016) Valuing Health-Related Quality of Life: An EQ-5D-5L Value Set for England. OHE Research Paper. London: Office of Health Economics.Google Scholar
  19. 19.
    Porter, M. E., Larsson, S., & Lee, T. H. (2016). Standardizing patient outcomes measurement. New England Journal of Medicine, 374(6), 504–506. doi:10.1056/NEJMp1511701.CrossRefPubMedGoogle Scholar
  20. 20.
    Wiering, B., de Boer, D., & Delnoij, D. (2016). Patient involvement in the development of patient-reported outcome measures: A scoping review. Health Expectations. doi:10.1111/hex.12442.PubMedGoogle Scholar
  21. 21.
    Wennberg, J. E., O’Connor, A. M., Collins, E. D., & Weinstein, J. N. (2007). Extending the P4P agenda, part 1: How medicare can improve patient decision making and reduce unnecessary care. Health Affairs (Millwood), 26(6), 1564–1574. doi:10.1377/hlthaff.26.6.1564.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Welmoed K. van Deen
    • 1
    • 2
    • 3
  • Dominic Nguyen
    • 1
  • Natalie E. Duran
    • 1
  • Ellen Kane
    • 1
  • Martijn G. H. van Oijen
    • 4
  • Daniel W. Hommes
    • 1
  1. 1.Division of Digestive Diseases, Center for Inflammatory Bowel Diseases, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  2. 2.Gehr Family Center for Implementation Science, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Leonard D. Schaeffer Center for Health Policy and EconomicsUniversity of Southern CaliforniaLos AngelesUSA
  4. 4.Department of Medical Oncology, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations