Quality of Life Research

, Volume 25, Issue 4, pp 823–833 | Cite as

Linkage between the PROMIS® pediatric and adult emotional distress measures

  • Bryce B. Reeve
  • David Thissen
  • Darren A. DeWalt
  • I-Chan Huang
  • Yang Liu
  • Brooke Magnus
  • Hally Quinn
  • Heather E. Gross
  • Pamela A. Kisala
  • Pengsheng Ni
  • Stephen Haley
  • M. J. Mulcahey
  • Susie Charlifue
  • Robin A. Hanks
  • Mary Slavin
  • Alan Jette
  • David S. Tulsky
Article

Abstract

Purpose

Research studies that measure health-related quality of life (HRQOL) in both children and adults and longitudinal studies that follow children into adulthood need measures that can be compared across these age groups. This study links the PROMIS pediatric and adult emotional distress measures using data from participants with diverse health conditions and disabilities.

Methods

Analyses were conducted and compared in two separate samples to confirm the stability of results. One sample (n = 874) included individuals aged 14–20 years with special health care needs and who require health services. The other sample (n = 641) included individuals aged 14–25 years who have a physical or cognitive disability. Participants completed both PROMIS pediatric and adult measures. Item response theory-based scores were linked using the linear approximation to calibrated projection.

Results

The estimated latent-variable correlation between pediatric and adult PROMIS measures ranged from 0.87 to 0.94. Regression coefficients β0 (intercept) and β1 (slope), and mean squared error are provided to transform scores from the pediatric to the adult measures, and vice versa.

Conclusions

This study used a relatively new linking method, calibrated projection, to link PROMIS pediatric and adult measure scores, thus expanding the use of PROMIS measures to research that includes both populations.

Keywords

PROMIS Pediatrics Patient-reported outcomes Item response theory Linkage Emotional distress 

References

  1. 1.
    DeWalt, D. A., Rothrock, N., Yount, S., & Stone, A. A. (2007). Evaluation of item candidates: The PROMIS qualitative item review. Medical Care, 45(5 Suppl 1), S12–S21. doi:10.1097/01.mlr.0000254567.79743.e200005650-200705001-00003.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Irwin, D. E., Varni, J. W., Yeatts, K., & DeWalt, D. A. (2009). Cognitive interviewing methodology in the development of a pediatric item bank: A patient reported outcomes measurement information system (PROMIS) study. Health and Quality of Life Outcomes, 7, 3. doi:10.1186/1477-7525-7-3.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dorans, N. J. (2007). Linking scores from multiple health outcome instruments. Quality of Life Research, 16(Suppl 1), 85–94. doi:10.1007/s11136-006-9155-3.CrossRefPubMedGoogle Scholar
  4. 4.
    Bjorner, J. B., Chang, C. H., Thissen, D., & Reeve, B. B. (2007). Developing tailored instruments: item banking and computerized adaptive assessment. Quality of Life Research, 16(Suppl 1), 95–108. doi:10.1007/s11136-007-9168-6.CrossRefPubMedGoogle Scholar
  5. 5.
    Thissen, D., Reeve, B. B., Bjorner, J. B., & Chang, C. H. (2007). Methodological issues for building item banks and computerized adaptive scales. Quality of Life Research, 16(Suppl 1), 109–119. doi:10.1007/s11136-007-9169-5.CrossRefPubMedGoogle Scholar
  6. 6.
    McHorney, C. A., & Cohen, A. S. (2000). Equating health status measures with item response theory: Illustrations with functional status items. Medical Care, 38(9 Suppl), II43–II59. doi:10.1097/00005650-200009002-00008.PubMedGoogle Scholar
  7. 7.
    Haley, S. M., Ni, P., Lai, J. S., Tian, F., Coster, W. J., Jette, A. M., et al. (2011). Linking the activity measure for post acute care and the quality of life outcomes in neurological disorders. Archives of Physical Medicine and Rehabilitation, 92(10 Suppl), S37–S43. doi:10.1016/j.apmr.2011.01.026.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Masse, L. C., Allen, D., Wilson, M., & Williams, G. (2006). Introducing equating methodologies to compare test scores from two different self-regulation scales. Health Education Research, 21(Suppl 1), i110–i120. doi:10.1093/her/cyl088.CrossRefPubMedGoogle Scholar
  9. 9.
    Orlando, M., Sherbourne, C. D., & Thissen, D. (2000). Summed-score linking using item response theory: Application to depression measurement. Psychological Assessment, 12(3), 354–359.CrossRefPubMedGoogle Scholar
  10. 10.
    Tian, F., Ni, P., Mulcahey, M. J., Hambleton, R. K., Tulsky, D., Haley, S. M., & Jette, A. M. (2014). Tracking functional status across the spinal cord injury lifespan: Linking pediatric and adult patient-reported outcome scores. Archives of Physical Medicine and Rehabilitation, 95(11), 2078 e2015–2085 e2015. doi:10.1016/j.apmr.2014.05.023.CrossRefGoogle Scholar
  11. 11.
    Fisher, W. P, Jr, Eubanks, R. L., & Marier, R. L. (1997). Equating the MOS SF36 and the LSU HSI Physical Functioning Scales. Journal of Outcome Measurement, 1(4), 329–362.PubMedGoogle Scholar
  12. 12.
    Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  13. 13.
    Holzner, B., Bode, R. K., Hahn, E. A., Cella, D., Kopp, M., Sperner-Unterweger, B., & Kemmler, G. (2006). Equating EORTC QLQ-C30 and FACT-G scores and its use in oncological research. European Journal of Cancer, 42(18), 3169–3177. doi:10.1016/j.ejca.2006.08.016.CrossRefPubMedGoogle Scholar
  14. 14.
    Wahl, I., Lowe, B., Bjorner, J. B., Fischer, F., Langs, G., Voderholzer, U., et al. (2014). Standardization of depression measurement: A common metric was developed for 11 self-report depression measures. Journal of Clinical Epidemiology, 67(1), 73–86. doi:10.1016/j.jclinepi.2013.04.019.CrossRefPubMedGoogle Scholar
  15. 15.
    Huang, I. C., Wu, A. W., & Frangakis, C. (2006). Do the SF-36 and WHOQOL-BREF measure the same constructs? Quality of Life Research, 15(1), 15–24. doi:10.1007/s11136-005-8486-9.CrossRefPubMedGoogle Scholar
  16. 16.
    Thissen, D., Liu, Y., Magnus, B., & Quinn, H. (2015). Extending the use of multidimensional IRT calibration as projection: Many-to-one linking and linear computation of projected scores. In L. A. van der Ark, D. M. Bolt, W-C. Wang, J. A. Douglas & S-M. Chow (Eds.), Quantitative Psychology Research: The 79th annual meeting of the psychometric society, Madison, Wisconsin, 2014 (pp. 1–16). New York: Springer. Google Scholar
  17. 17.
    Irwin, D. E., Stucky, B., Langer, M. M., Thissen, D., Dewitt, E. M., Lai, J. S., et al. (2010). An item response analysis of the pediatric PROMIS anxiety and depressive symptoms scales. Quality of Life Research, 19(4), 595–607. doi:10.1007/s11136-010-9619-3.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Irwin, D. E., Stucky, B. D., Langer, M. M., Thissen, D., Dewitt, E. M., Lai, J. S., et al. (2012). PROMIS Pediatric Anger Scale: An item response theory analysis. Quality of Life Research, 21(4), 697–706. doi:10.1007/s11136-011-9969-5.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pilkonis, P. A., Choi, S. W., Reise, S. P., Stover, A. M., Riley, W. T., & Cella, D. (2011). Item banks for measuring emotional distress from the Patient-Reported Outcomes Measurement Information System (PROMIS(R)): Depression, anxiety, and anger. Assessment, 18(3), 263–283. doi:10.1177/1073191111411667.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    McPherson, M., Arango, P., Fox, H., Lauver, C., McManus, M., Newacheck, P. W., et al. (1998). A new definition of children with special health care needs. Pediatrics, 102(1 Pt 1), 137–140. doi:10.1542/peds.102.1.137.CrossRefPubMedGoogle Scholar
  21. 21.
    Neff, J. M., Sharp, V. L., Muldoon, J., Graham, J., Popalisky, J., & Gay, J. C. (2002). Identifying and classifying children with chronic conditions using administrative data with the clinical risk group classification system. Ambulatory Pediatrics, 2(1), 71–79. doi:10.1367/1539-4409(2002)002<0071:iaccwc>2.0.co;2.CrossRefPubMedGoogle Scholar
  22. 22.
    Bethell, C. D., Read, D., Stein, R. E., Blumberg, S. J., Wells, N., & Newacheck, P. W. (2002). Identifying children with special health care needs: development and evaluation of a short screening instrument. Ambulatory Pediatrics, 2(1), 38–48. doi:10.1367/1539-4409(2002)002<0038:icwshc>2.0.co;2.CrossRefPubMedGoogle Scholar
  23. 23.
    Gershon, R., Rothrock, N. E., Hanrahan, R. T., Jansky, L. J., Harniss, M., & Riley, W. (2010). The development of a clinical outcomes survey research application: Assessment Center. Quality of Life Research, 19(5), 677–685. doi:10.1007/s11136-010-9634-4.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Irwin, D. E., Stucky, B. D., Thissen, D., Dewitt, E. M., Lai, J. S., Yeatts, K., et al. (2010). Sampling plan and patient characteristics of the PROMIS pediatrics large-scale survey. Quality of Life Research, 19(4), 585–594. doi:10.1007/s11136-010-9618-4.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dorans, N. J. (2004). Equating, concordance, and expectation. Applied Psychological Measurement, 28, 227–246. doi:10.1177/0146621604265031.CrossRefGoogle Scholar
  26. 26.
    Dorans, N. J., & Walker, M. E. (2007). Sizing up linkages. In N. J. Dorans, M. Pommerich, & P. W. Hollands (Eds.), Linking and aligning scores and scales (pp. 179–198). New York: Springer. doi:10.1007/978-0-387-49771-6_10.CrossRefGoogle Scholar
  27. 27.
    Dorans, N. J., & Holland, P. W. (2000). Population invariance and the equatability of tests: Basic theory and the linear case. Journal of Educational Measurement, 37(4), 281–306. doi:10.1002/j.2333-8504.2000.tb01842.x.CrossRefGoogle Scholar
  28. 28.
    Cai, L., Thissen, D., & du Toit, S. H. C. (2011). IRTPRO for windows. Lincolnwood, IL: Scientific Software International.Google Scholar
  29. 29.
    Samejima, F. (1997). Graded response model. In W. J. van der Liden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 85–100). New York: Springer. doi:10.1007/978-1-4757-2691-6_5.CrossRefGoogle Scholar
  30. 30.
    Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement. No. 17 (pp. 1–98). Richamond, VA: Psychometric Society. Retrieved from http://www.psychometrika.org/jounal/online/MN17.pdf.
  31. 31.
    Thissen, D., Varni, J. W., Stucky, B. D., Liu, Y., Irwin, D. E., & Dewalt, D. A. (2011). Using the PedsQL 3.0 asthma module to obtain scores comparable with those of the PROMIS pediatric asthma impact scale (PAIS). Quality of Life Research, 20(9), 1497–1505. doi:10.1007/s11136-011-9874-y.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kolen, M. J., & Brennan, R. L. (2004). Test equating, scaling, and linking. Methods and Practice (2nd ed.). New York: Springer.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bryce B. Reeve
    • 1
    • 2
  • David Thissen
    • 3
  • Darren A. DeWalt
    • 4
  • I-Chan Huang
    • 5
    • 6
  • Yang Liu
    • 7
  • Brooke Magnus
    • 3
  • Hally Quinn
    • 3
  • Heather E. Gross
    • 2
  • Pamela A. Kisala
    • 8
  • Pengsheng Ni
    • 9
  • Stephen Haley
    • 9
  • M. J. Mulcahey
    • 10
  • Susie Charlifue
    • 11
  • Robin A. Hanks
    • 12
  • Mary Slavin
    • 9
  • Alan Jette
    • 9
  • David S. Tulsky
    • 8
  1. 1.Department of Health Policy and Management, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Cecil G. Sheps Center for Health Services ResearchUniversity of North Carolina at Chapel HillChapel HillUSA
  3. 3.Department of Psychology and NeuroscienceUniversity of North Carolina at Chapel HillChapel HillUSA
  4. 4.Division of General Medicine and Clinical Epidemiology, Cecil G. Sheps Center for Health Services ResearchUniversity of North Carolina at Chapel HillChapel HillUSA
  5. 5.Department of Health Outcomes and Policy, College of MedicineUniversity of FloridaGainesvilleUSA
  6. 6.Department of Epidemiology and Cancer ControlSt. Jude Children’s Research HospitalMemphisUSA
  7. 7.School of Social SciencesHumanities, and Arts University of CaliforniaMercedUSA
  8. 8.Center for Assessment Research and Translation, Department of Physical Therapy, College of Health SciencesUniversity of DelawareNewarkUSA
  9. 9.Health and Disability Research InstituteBoston University School of Public HealthBostonUSA
  10. 10.Department of Occupational Therapy, School of Health ProfessionsThomas Jefferson UniversityPhiladelphiaUSA
  11. 11.Craig HospitalEnglewoodUSA
  12. 12.Wayne State University School of MedicineDetroitUSA

Personalised recommendations