Quality of Life Research

, Volume 25, Issue 1, pp 13–23 | Cite as

Estimating minimally important difference (MID) in PROMIS pediatric measures using the scale-judgment method

  • David ThissenEmail author
  • Yang Liu
  • Brooke Magnus
  • Hally Quinn
  • Debbie S. Gipson
  • Carlton Dampier
  • I-Chan Huang
  • Pamela S. Hinds
  • David T. Selewski
  • Bryce B. Reeve
  • Heather E. Gross
  • Darren A. DeWalt



To assess minimally important differences (MIDs) for several pediatric self-report item banks from the National Institutes of Health Patient-Reported Outcomes Measurement Information System® (PROMIS®).


We presented vignettes comprising sets of two completed PROMIS questionnaires and asked judges to declare whether the individual completing those questionnaires had an important change or not. We enrolled judges (including adolescents, parents, and clinicians) who responded to 24 vignettes (six for each domain of depression, pain interference, fatigue, and mobility). We used item response theory to model responses to the vignettes across different judges and estimated MID as the point at which 50 % of the judges would declare an important change.


We enrolled 246 judges (78 adolescents, 85 parents, and 83 clinicians). The MID estimated with clinician data was about 2 points on the PROMIS T-score scale, and the MID estimated with adolescent and parent data was about 3 points on that same scale.


The MIDs enhance the value of PROMIS pediatric measures in clinical research studies to identify meaningful changes in health status over time.


PROMIS Pediatrics Self-report Patient-reported outcomes Item response theory Minimally important difference 



Patient-Reported Outcomes Measurement Information System®


National Institutes of Health


Minimally important difference


Patient-reported outcome



PROMIS® was funded with cooperative agreements from the National Institutes of Health (NIH) Common Fund Initiative (Northwestern University, PI: David Cella, PhD, U54AR057951, U01AR052177; Northwestern University, PI: Richard C. Gershon, PhD, U54AR057943; American Institutes for Research, PI: Susan (San) D. Keller, PhD, U54AR057926; State University of New York, Stony Brook, PIs: Joan E. Broderick, PhD and Arthur A. Stone, PhD, U01AR057948, U01AR052170; University of Washington, Seattle, PIs: Heidi M. Crane, MD, MPH, Paul K. Crane, MD, MPH, and Donald L. Patrick, PhD, U01AR057954; University of Washington, Seattle, PI: Dagmar Amtmann, PhD, U01AR052171; University of North Carolina, Chapel Hill, PI: Harry A. Guess, MD, PhD (deceased), Darren A. DeWalt, MD, MPH, U01AR052181; Children’s Hospital of Philadelphia, PI: Christopher B. Forrest, MD, PhD, U01AR057956; Stanford University, PI: James F. Fries, MD, U01AR052158; Boston University, PIs: Alan Jette, PT, PhD, Stephen M. Haley, PhD (deceased), and David Scott Tulsky, PhD (University of Michigan, Ann Arbor), U01AR057929; University of California, Los Angeles, PIs: Dinesh Khanna, MD (University of Michigan, Ann Arbor) and Brennan Spiegel, MD, MSHS, U01AR057936; University of Pittsburgh, PI: Paul A. Pilkonis, PhD, U01AR052155; Georgetown University, PIs: Carol. M. Moinpour, PhD (Fred Hutchinson Cancer Research Center, Seattle) and Arnold L. Potosky, PhD, U01AR057971; Children’s Hospital Medical Center, Cincinnati, PI: Esi M. Morgan DeWitt, MD, MSCE, U01AR057940; University of Maryland, Baltimore, PI: Lisa M. Shulman, MD, U01AR057967; and Duke University, PI: Kevin P. Weinfurt, PhD, U01AR052186). NIH Science Officers on this project have included Deborah Ader, PhD, Vanessa Ameen, MD (deceased), Susan Czajkowski, PhD, Basil Eldadah, MD, PhD, Lawrence Fine, MD, DrPH, Lawrence Fox, MD, PhD, Lynne Haverkos, MD, MPH, Thomas Hilton, PhD, Laura Lee Johnson, PhD, Michael Kozak, PhD, Peter Lyster, PhD, Donald Mattison, MD, Claudia Moy, PhD, Louis Quatrano, PhD, Bryce Reeve, PhD, William Riley, PhD, Peter Scheidt, MD, Ashley Wilder Smith, PhD, MPH, Susana Serrate-Sztein, MD, William Phillip Tonkins, DrPH, Ellen Werner, PhD, Tisha Wiley, PhD, and James Witter, MD, PhD. We thank Catriona Mowbray, PhD, RN at the Children’s National Health System site, as well as Susan Massengill at Levine Children’s Hospital and Rasheed Gbadegesin at Duke University for important contributions, and Karon Cook, PhD, and Ron Hays, PhD, for very helpful comments on an earlier draft. The contents of this article use data developed under PROMIS. These contents do not necessarily represent an endorsement by the US Federal Government or PROMIS. See for additional information on the PROMIS® initiative. We would also like to acknowledge Susan Massengill at Levine Children’s Hospital and Rasheed Gbadegesin at Duke University, as they led the MID work for sampling the nephrotic syndrome population at these institutions.

Compliance with Ethical Standards

Conflict of interest

Darren DeWalt has copyright of the items in the PROMIS scales tested in this study. He has granted unrestricted license for use of the items to the PROMIS Health Organization and receives no payment or royalties for their use.


  1. 1.
    Guyatt, G. H., Osoba, D., Wu, A. W., Wyrwich, K. W., & Norman, G. R. (2002). Methods to explain the clinical significance of health status measures. Mayo Clinic Proceedings, 77(4), 371–383. doi: 10.4065/77.4.371.PubMedCrossRefGoogle Scholar
  2. 2.
    Revicki, D., Hays, R. D., Cella, D., & Sloan, J. (2008). Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. Journal of Clinical Epidemiology, 61(2), 102–109. doi: 10.1016/j.jclinepi.2007.03.012.PubMedCrossRefGoogle Scholar
  3. 3.
    Jaeschke, R., Singer, J., & Guyatt, G. H. (1989). Measurement of health status. Ascertaining the minimal clinically important difference. Controlled Clinical Trials, 10(4), 407–415. doi: 10.1016/0197-2456(89)90005-6.PubMedCrossRefGoogle Scholar
  4. 4.
    Wells, G., Li, T., Maxwell, L., MacLean, R., & Tugwell, P. (2007). Determining the minimal clinically important differences in activity, fatigue, and sleep quality in patients with rheumatoid arthritis. Journal of Rheumatology, 34(2), 280–289.PubMedGoogle Scholar
  5. 5.
    Bellamy, N., Anastassiades, T. P., Buchanan, W. W., Davis, P., Lee, P., McCain, G. A., et al. (1991). Rheumatoid arthritis antirheumatic drug trials. III. Setting the delta for clinical trials of antirheumatic drugs—Results of a consensus development (Delphi) exercise. Journal of Rheumatology, 18(12), 1908–1915.PubMedGoogle Scholar
  6. 6.
    Bellamy, N., Buchanan, W. W., Esdaile, J. M., Fam, A. G., Kean, W. F., Thompson, J. M., et al. (1991). Ankylosing spondylitis antirheumatic drug trials. III. Setting the delta for clinical trials of antirheumatic drugs—Results of a consensus development (Delphi) exercise. Journal of Rheumatology, 18(11), 1716–1722.PubMedGoogle Scholar
  7. 7.
    Bellamy, N., Carette, S., Ford, P. M., Kean, W. F., le Riche, N. G., Lussier, A., et al. (1992). Osteoarthritis antirheumatic drug trials. III. Setting the delta for clinical trials–results of a consensus development (Delphi) exercise. Journal of Rheumatology, 19(3), 451–457.PubMedGoogle Scholar
  8. 8.
    Spiegel, B. M., Younossi, Z. M., Hays, R. D., Revicki, D., Robbins, S., & Kanwal, F. (2005). Impact of hepatitis C on health related quality of life: A systematic review and quantitative assessment. Hepatology, 41(4), 790–800. doi: 10.1002/hep.20659.PubMedCrossRefGoogle Scholar
  9. 9.
    Wyrwich, K. W., Metz, S. M., Kroenke, K., Tierney, W. M., Babu, A. N., & Wolinsky, F. D. (2007). Triangulating patient and clinician perspectives on clinically important differences in health-related quality of life among patients with heart disease. Health Services Research, 42(6 Pt 1), 2257–2274. doi: 10.1111/j.1475-6773.2007.00733.x.
  10. 10.
    Rai, S. K., Yazdany, J., Fortin, P. R., & Avina-Zubieta, J. A. (2015). Approaches for estimating minimal clinically important differences in systemic lupus erythematosus. Arthritis Research & Therapy, 17, 143. doi: 10.1186/s13075-015-0658-6.CrossRefGoogle Scholar
  11. 11.
    van Walraven, C., Mahon, J. L., Moher, D., Bohm, C., & Laupacis, A. (1999). Surveying physicians to determine the minimal important difference: Implications for sample-size calculation. Journal of Clinical Epidemiology, 52(8), 717–723. doi: 10.1016/S0895-4356(99)00050-5.PubMedCrossRefGoogle Scholar
  12. 12.
    Todd, K. H., & Funk, J. P. (1996). The minimum clinically important difference in physician-assigned visual analog pain scores. Academic Emergency Medicine, 3(2), 142–146. doi: 10.1111/j.1553-2712.1996.tb03402.x.PubMedCrossRefGoogle Scholar
  13. 13.
    Dempster, H., Porepa, M., Young, N., & Feldman, B. M. (2001). The clinical meaning of functional outcome scores in children with juvenile arthritis. Arthritis and Rheumatism, 44(8), 1768–1774. doi: 10.1002/1529-0131(200108)44:8<1768:AID-ART312>3.0.CO;2-Q.PubMedCrossRefGoogle Scholar
  14. 14.
    Gong, G. W., Young, N. L., Dempster, H., Porepa, M., & Feldman, B. M. (2007). The Quality of My Life questionnaire: The minimal clinically important difference for pediatric rheumatology patients. Journal of Rheumatology, 34(3), 581–587.PubMedGoogle Scholar
  15. 15.
    Kingston, N. M., Kahl, S. R., Sweeney, K. P., & Bay, L. (2001). Setting performance standards using the body of work method. In G. J. Cizek (Ed.), Setting performance standards: Concepts, methods, and perspectives (pp. 219–248). Mahwah, NJ: Lawrence Erlbaum Associates Inc.Google Scholar
  16. 16.
    Cella, D., Choi, S., Garcia, S., Cook, K. F., Rosenbloom, S., Lai, J. S., et al. (2014). Setting standards for severity of common symptoms in oncology using the PROMIS item banks and expert judgment. Quality of Life Research,. doi: 10.1007/s11136-014-0732-6.Google Scholar
  17. 17.
    Cook, K. F., Victorson, D. E., Cella, D., Schalet, B. D., & Miller, D. (2015). Creating meaningful cut-scores for Neuro-QOL measures of fatigue, physical functioning and sleep disturbance using standard setting with patients and providers. Quality of Life Research, 24(3), 575–589. doi: 10.1007/s11136-014-0790-9.PubMedCrossRefGoogle Scholar
  18. 18.
    Irwin, D. E., Stucky, B., Langer, M. M., Thissen, D., Dewitt, E. M., Lai, J. S., et al. (2010). An item response analysis of the pediatric PROMIS anxiety and depressive symptoms scales. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 19(4), 595–607. doi: 10.1007/s11136-010-9619-3.CrossRefGoogle Scholar
  19. 19.
    Varni, J. W., Stucky, B. D., Thissen, D., Dewitt, E. M., Irwin, D. E., Lai, J. S., et al. (2010). PROMIS Pediatric Pain Interference Scale: An item response theory analysis of the Pediatric Pain Item Bank. Journal of Pain, 11(11), 1109–1119. doi: 10.1016/j.jpain.2010.02.005.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lai, J. S., Stucky, B. D., Thissen, D., Varni, J. W., Dewitt, E. M., Irwin, D. E., et al. (2013). Development and psychometric properties of the PROMIS® pediatric fatigue item banks. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation,. doi: 10.1007/s11136-013-0357-1.Google Scholar
  21. 21.
    Dewitt, E. M., Stucky, B. D., Thissen, D., Irwin, D. E., Langer, M., Varni, J. W., et al. (2011). Construction of the eight-item Patient-Reported Outcomes Measurement Information System pediatric physical function scales: Built using item response theory. Journal of Clinical Epidemiology, 64(7), 794–804. doi: 10.1016/j.jclinepi.2010.10.012.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Qualtrics. (2013). Qualtrics research suite (version 37892). Provo, UT.Google Scholar
  23. 23.
    Robinson-Cimpian, J. P. (2014). Inaccurate estimation of disparities due to mischievous responders: Several suggestions to assess conclusions. Educational Researcher, 43(4), 171–185. doi: 10.3102/0013189x14534297.CrossRefGoogle Scholar
  24. 24.
    Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model. Psychometrika, 47(2), 175–186. doi: 10.1007/bf02296273.CrossRefGoogle Scholar
  25. 25.
    Yost, K. J., Eton, D. T., Garcia, S. F., & Cella, D. (2011). Minimally important differences were estimated for six Patient-Reported Outcomes Measurement Information System-Cancer scales in advanced-stage cancer patients. Journal of Clinical Epidemiology, 64(5), 507–516. doi: 10.1016/j.jclinepi.2010.11.018.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Copay, A. G., Glassman, S. D., Subach, B. R., Berven, S., Schuler, T. C., & Carreon, L. Y. (2008). Minimum clinically important difference in lumbar spine surgery patients: A choice of methods using the Oswestry Disability Index, Medical Outcomes Study questionnaire Short Form 36, and pain scales. The Spine Journal, 8(6), 968–974. doi: 10.1016/j.spinee.2007.11.006.PubMedCrossRefGoogle Scholar
  27. 27.
    Copay, A. G. (2012). Commentary: The proliferation of minimum clinically important differences. The Spine Journal, 12(12), 1129–1131. doi: 10.1016/j.spinee.2012.11.022.PubMedCrossRefGoogle Scholar
  28. 28.
    Demyttenaere, K., Desaiah, D., Petit, C., Croenlein, J., & Brecht, S. (2009). Patient-assessed versus physician-assessed disease severity and outcome in patients with nonspecific pain associated with major depressive disorder. Primary Care Companion to the Journal of Clinical Psychiatry, 11(1), 8–15. doi: 10.4088/PCC.08m00670.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • David Thissen
    • 1
    Email author
  • Yang Liu
    • 1
  • Brooke Magnus
    • 1
  • Hally Quinn
    • 1
  • Debbie S. Gipson
    • 2
  • Carlton Dampier
    • 3
  • I-Chan Huang
    • 4
    • 10
  • Pamela S. Hinds
    • 5
    • 6
  • David T. Selewski
    • 2
  • Bryce B. Reeve
    • 7
  • Heather E. Gross
    • 8
  • Darren A. DeWalt
    • 9
  1. 1.Department of PsychologyUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Division of Nephrology, Department of Pediatrics and Communicable Diseases, C.S. Mott Children’s HospitalUniversity of MichiganAnn ArborUSA
  3. 3.Department of PediatricsEmory University College of MedicineAtlantaUSA
  4. 4.Institute for Child Health PolicyUniversity of FloridaGainesvilleUSA
  5. 5.Children’s National Health SystemWashingtonUSA
  6. 6.The George Washington UniversityWashingtonUSA
  7. 7.Department of Health Policy and Management, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillUSA
  8. 8.Cecil G. Sheps Center for Health Services ResearchUniversity of North Carolina at Chapel HillChapel HillUSA
  9. 9.Division of General Medicine and Clinical Epidemiology, Cecil G. Sheps Center for Health Services ResearchUniversity of North Carolina at Chapel HillChapel HillUSA
  10. 10.Department of Epidemiology and Cancer ControlSt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations