Quality of Life Research

, Volume 23, Issue 10, pp 2899–2907 | Cite as

Equating the HBSC Family Affluence Scale across survey years: a method to account for item parameter drift using the Rasch model

  • Guido Makransky
  • Christina Warrer Schnohr
  • Torbjørn Torsheim
  • Candace Currie



To investigate the measurement invariance (MI) of the Family Affluence Scale (FAS) measured in the Health Behavior in School-aged Children (HBSC) survey, and to describe a method for equating the scale when MI is violated across survey years.


This study used a sample of 14,076 Norwegian and 17,365 Scottish adolescents from the 2002, 2006 and 2010 HBSC surveys to investigate the MI of the FAS across survey years. Violations of MI in the form of differential item functioning (DIF) due to item parameter drift (IPD) were modeled within the Rasch framework to ensure that the FAS scores from different survey years remain comparable.


The results indicate that the FAS is upwardly biased due to IPD in the computer item across survey years in the Norwegian and Scottish samples. Ignoring IPD across survey years resulted in the conclusion that family affluence is increasing quite consistently in Norway and Scotland. However, the results show that a large part of the increase in the FAS scores can be attributed to bias in the FAS because of IPD across time. The increase in the FAS was more modest in Scotland and slightly negative in Norway once the DIF in the computer item was accounted for in this study.


When the comparison of family affluence is necessary over different HBSC survey years or when the longitudinal implications of family affluence are of interest, it is necessary to account for IPD in interpretation of changes in family affluence across time.


Family Affluence Scale Differential item functioning (DIF) Health Behavior in School-aged Children (HBSC) Rasch model Item parameter drift (IPD) 


  1. 1.
    Mackenbach, J. P. (2002). Evidence favouring a negative correlation between income inequality and life expectancy has disappeared. British Medical Journal, 324(7328), 1–2.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Carstairs, V., & Morris, R. (1989). Deprivation: Explaining differences in mortality between Scotland and England and Wales. British Medical Journal, 299, 886–889.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Currie, C., Elton, R. A., Todd, J., & Platt, S. (1997). Indicators of socioeconomic status for adolescents: The WHO Health Behaviour in School-aged Children Survey. Health Education Research, 12(3), 385–397.PubMedCrossRefGoogle Scholar
  4. 4.
    Wardle, J., Robb, K., & Johnson, F. (2002). Assessing socioeconomic status in adolescents: The validity of a home affluence scale. Journal of Epidemiology Community Health, 56(8), 595–599.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Kehoe, S., & O’Hare, L. (2010). The reliability and validity of the Family Affluence Scale. Effective Education, 2(2), 155–164.CrossRefGoogle Scholar
  6. 6.
    Currie, C., Molcho, M., Boyce, W., Holstein, B., Torsheim, T., & Richter, M. (2008). Researching health inequalities in adolescents: The development of the Health Behaviour in School-Aged Children (HBSC) Family Affluence Scale. Social Science and Medicine, 66(6), 1429–1436.PubMedCrossRefGoogle Scholar
  7. 7.
    Boyce, W., Torsheim, T., Currie, C., & Zambon, A. (2006). The Family Affluence Scale as a measure of national wealth: Validation of an adolescent self-report measure. Social Indicators Research, 78(3), 473–487.CrossRefGoogle Scholar
  8. 8.
    Torsheim, T., Ravens-Sieberer, U., Hetland, J., Valimaa, R., Danielson, M., & Overpeck, M. (2006). Cross-national variation of gender differences in adolescent subjective health in Europe and North America. Social Science and Medicine, 62(4), 815–827.PubMedCrossRefGoogle Scholar
  9. 9.
    Zambon, A., Boyce, W., Cois, E., Currie, C., Lemma, P., Dalmasso, P., et al. (2006). Do welfare regimes mediate the effect of socioeconomic position on health in adolescence? A cross-national comparison in Europe, North America, and Israel. International Journal of Health Services, 36(2), 309–329.PubMedCrossRefGoogle Scholar
  10. 10.
    Andersen, A., Krolner, R., Currie, C., Dallago, L., Due, P., Richter, M., et al. (2008). High agreement on family affluence between children’s and parents’ reports: International study of 11-year-old children. Journal Epidemiology Community Health, 62, 1092–1094.CrossRefGoogle Scholar
  11. 11.
    Torsheim, T., Currie, C., Boyce, W., Kalnins, I., Overpeck, M., & Haugland, S. (2004). Material deprivation and self-rated health: A multilevel study of adolescents from 22 European and North American countries. Social Science and Medicine, 59(1), 1–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Townsend, P. (1987). Deprivation. Journal of Social Policy, 16, 125–146.CrossRefGoogle Scholar
  13. 13.
    Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research.Google Scholar
  14. 14.
    Bond, T. G., & Fox, C. M. (2001). Applying the Rasch model: Fundamental measurement in the human sciences. London: Lawrence Erlbaum Associates.Google Scholar
  15. 15.
    Donoghue, J. R., & Isham, S. P. (1998). A comparison of procedures to detect item parameter drift. Applied Psychological Measurement, 22(1), 33–51.CrossRefGoogle Scholar
  16. 16.
    van der Linden, W. J., & Glas, C. A. W. (2010). Elements of adaptive testing. New York: Springer.CrossRefGoogle Scholar
  17. 17.
    Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4–69.CrossRefGoogle Scholar
  18. 18.
    Makransky, G., & Glas, C. A. W. (2013). Modeling differential item functioning with group-specific item parameters: A computerized adaptive testing application. Measurement. doi: 10.1016/j.measurement.2013.06.020.
  19. 19.
    Schnohr, C. W., Kreiner, S., Due, E., Currie, C., Boyce, W., & Diderichsen, F. (2008). Differential item functioning of a Family Affluence Scale: Validation study on data from HBSC 2001/02. Social Indicators Research, 89(1), 79–95.CrossRefGoogle Scholar
  20. 20.
    Schnohr, C. W., Makransky, G., Kreiner, S., De Clerq, B., Hofmann, F., Torsheim, T., Elgar, F., & Currie, C,. (2013). Item response drift in the Family Affluence Scale: A study on three consecutive surveys of the Health Behavior in School-aged Children (HBSC) survey. Measurement, 45(9), 3119–3126.Google Scholar
  21. 21.
    Tennant, A., & Conaghan, P. G. (2007). The Rasch measurement model in rheumatology: What is it and why use it? When should it be applied, and what should one look for in a Rasch paper? Arthritis and Rheumatism, 57(8), 1358–1362.PubMedCrossRefGoogle Scholar
  22. 22.
    Kreiner, S., & Christensen, K. B. (2011). Item screening in graphical loglinear Rasch models. Psychometrika, 76(2), 228–256.CrossRefGoogle Scholar
  23. 23.
    van Groen, M. M., ten Klooster, P. M., Taal, E., van de Laar, M. A. F. J., & Glas, C. A. W. (2010). Application of the health assessment questionnaire disability index to various rheumatic diseases. Quality of Life Research, 12, 1255–1263.CrossRefGoogle Scholar
  24. 24.
    Weisscer, N., Glas, C. A., Vermeulen, M., & De Haan, R. J. (2010). The use of an item response theory-based disability item bank across diseases: Accounting for differential item functioning. Journal of Clinical Epidemology, 63, 543–549.CrossRefGoogle Scholar
  25. 25.
    Glas, C. A. W. (1999). Modification indices for the 2-pl and the nominal response model. Psychometrika, 64, 273–294.CrossRefGoogle Scholar
  26. 26.
    Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149–174.CrossRefGoogle Scholar
  27. 27.
    Glas, C. A. W. (1998). Detection of differential item functioning using Lagrange multiplier tests. Statistica Sinica, 8, 647–667.Google Scholar
  28. 28.
    Kalid, M. N. (2009). IRT model fit from different perspectives. Doctoral dissertation, University of Twente, The Netherlands.Google Scholar
  29. 29.
    Kalid, M. N., & Glas, C. A. W. (2013). A scale purification procedure for evaluation of differential item functioning. Manuscript submitted for publication.Google Scholar
  30. 30.
    Glas, C. A. W., & Verhelst, N. D. (1995). Testing the Rasch model. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch models. Their foundations, recent developments and applications (pp. 69–96). New York: Springer.Google Scholar
  31. 31.
    Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443–459.CrossRefGoogle Scholar
  32. 32.
    Glas, C. A. W. (2010). MIRT: Multidimensional Item Response Theory. (Computer Software). University of Twente.
  33. 33.
    Smith, E. V., Jr. (2002). Detecting and evaluating the impact of multidimensionality using item fit statistics and principal component analysis of residuals. Journal of Applied Measurement, 3(2), 205–231.PubMedGoogle Scholar
  34. 34.
    Andrich, D., Sheridan, B., & Luo, G. (2010). Rasch models for measurement: RUMM2030. Perth: RUMM Laboratory.Google Scholar
  35. 35.
    Andrich, D., & Hagquist, C. (2012). Real and artificial differential item functioning. Journal of Educational and Behavioral Statistics, 37(3), 387–416.CrossRefGoogle Scholar
  36. 36.
    Christensen, C. B., Kreiner, S., & Mesbah, M. (2013). Rasch model in health. New York: Wiley.Google Scholar
  37. 37.
    Batista-Foguet, J. M., Fortinana, J., Currie, C., & Villalbi, J. R. (2004). Socio-economic indexes in surveys for comparisons between countries. Social Indicators Research, 67, 315–332.CrossRefGoogle Scholar
  38. 38.
    Elgar, F. J., De Clercq, B., Schnohr, C. W., Bird, P., Pickett, K. E., Torsheim, T., et al. (2013). Absolute and relative family affluence and psychosomatic symptoms in adolescents. Social Science and Medicine, 91, 25–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Guido Makransky
    • 4
  • Christina Warrer Schnohr
    • 1
  • Torbjørn Torsheim
    • 2
  • Candace Currie
    • 3
  1. 1.University of CopenhagenCopenhagenDenmark
  2. 2.University of BergenBergenNorway
  3. 3.University of St. AndrewsSt. AndrewsScotland
  4. 4.University of Southern DenmarkOdenseDenmark

Personalised recommendations