Skip to main content
Log in

Parent-reported cognition of children with cancer and its potential clinical usefulness

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Purpose

Cognitive dysfunction is a common concern for children with brain tumors (BTs) or those receiving central nervous system (CNS) toxic cancer treatments. Perceived cognitive function (PCF) is an economical screening that may be used to trigger full, formal cognitive testing. We assessed the potential clinical utility of PCF by comparing parent-reported scores for children with cancer with scores from the general US population.

Methods

Children (n = 515; mean age = 13.5 years; 57.0 % male) and one of their parents were recruited from pediatric oncology clinics. Most children (53.3 %) had a diagnosis of CNS tumor with an average time since diagnosis of 5.6 years. PCF was evaluated using the pediatric PCF item bank (pedsPCF), which was developed and normed on a sample drawn from the US general pediatric population. Children also completed computer-based neuropsychological tests. We tested relationships between PCF and clinical variables. Differential item functioning (DIF) was used to evaluate measurement bias between the samples.

Results

No item showed DIF, supporting the use of pedsPCF in the cancer sample. PedsPCF differentiated children with (vs. without) a BT, p < 0.01, and groups defined by years since diagnosis, p < 0.01. It significantly (p < 0.05) correlated with computerized neuropsychological tests in 40 of 60 comparisons. Children with BTs were rated as having worse pedsPCF scores than the norm, regardless of years since diagnosis.

Conclusions

PCF significantly differentiated cancer survivors with various clinical characteristics. It is brief and easy to implement. PCF should be considered for routine care of pediatric cancer survivors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Howlander, N., Noone, A. M., Krapcho, M., Neyman, N., Aminou, R., Waldron, W., et al. (2011). SEER cancer statistics review, 1975–2008. In N. C. Institute. (Ed.) (Vol. based on November 2010 SEER data submission, posted on the SEER web site). Bethesda, MD.

  2. Oeffinger, K. C., Mertens, A. C., Sklar, C. A., Kawashima, T., Hudson, M. M., Meadows, A. T., et al. (2006). Chronic health conditions in adult survivors of childhood cancer. New England Journal of Medicine, 355(15), 1572–1582.

    Article  PubMed  CAS  Google Scholar 

  3. Waber, D. P., Carpentieri, S. C., Klar, N., Silverman, L. B., Schwenn, M., Hurwitz, C. A., et al. (2000). Cognitive sequelae in children treated for acute lymphoblastic leukemia with dexamethasone or prednisone. Journal of Pediatric Hematology/oncology, 22(3), 206–213.

    Article  PubMed  CAS  Google Scholar 

  4. Butler, R. W., & Mulhern, R. K. (2005). Neurocognitive interventions for children and adolescents surviving cancer. Journal of Pediatric Psychology, 30(1), 65–78.

    Article  PubMed  Google Scholar 

  5. Mulhern, R. K., Merchant, T. E., Gajjar, A., Reddick, W. E., & Kun, L. E. (2004). Late neurocognitive sequelae in survivors of brain tumours in childhood. Lancet Oncology, 5(7), 399–408.

    Article  PubMed  Google Scholar 

  6. Ris, M. D., Packer, R., Goldwein, J., Jones-Wallace, D., & Boyett, J. M. (2001). Intellectual outcome after reduced-dose radiation therapy plus adjuvant chemotherapy for medulloblastoma: A Children’s Cancer Group study. Journal of Clinical Oncology, 19(15), 3470–3476.

    PubMed  CAS  Google Scholar 

  7. Moore, B. D., & II, I. (2005). Neurocognitive outcomes in survivors of childhood cancer. Journal of Pediatric Psychology, 30(1), 51–63.

    Article  PubMed  Google Scholar 

  8. Ellenberg, L., Liu, Q., Yasui, Y., Gioia, G., Packer, R. J., Mertens, A., et al. (2009). Neurocognitive status in long-term survivors of childhood CNS malignancies: A report from the Childhood Cancer Survivor Study. Neuropsychology, 23(6), 705–717.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Patenaude, A. F., & Kupst, M. J. (2005). Psychosocial functioning in pediatric cancer. Journal of Pediatric Psychology, 30(1), 9–27.

    Article  PubMed  Google Scholar 

  10. Zebrack, B. J., & Zeltzer, L. K. (2003). Quality of life issues and cancer survivorship. Current Problems in Cancer, 27(4), 198–211.

    Article  PubMed  Google Scholar 

  11. Lavigne, J. V., & Faier-Routman, J. (1992). Psychological adjustment to pediatric physical disorders: A meta-analytic review. Journal of Pediatric Psychology, 17(2), 133–157.

    Article  PubMed  CAS  Google Scholar 

  12. Ferguson, R. J., McDonald, B. C., Saykin, A. J., & Ahles, T. A. (2007). Brain structure and function differences in monozygotic twins: Possible effects of breast cancer chemotherapy. Journal of Clinical Oncology, 25(25), 3866–3870.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Mahone, E. M., Zabel, T. A., Levey, E., Verda, M., & Kinsman, S. (2002). Parent and self-report ratings of executive function in adolescents with myelomeningocele and hydrocephalus. Child Neuropsychology, 8(4), 258–270.

    Article  PubMed  Google Scholar 

  14. Lai, J.-S., Butt, Z., Zelko, F., Cella, D., Krull, K., Kieran, M., et al. (2011). Development of a parent-report cognitive function item bank using item response theory and exploration of its clinical utility in computerized adaptive testing. Journal of Pediatric Psychology, 36(7), 766–779.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory. Newbury Park, CA: SAGE Publications, Inc.

    Google Scholar 

  16. Reeve, B. B., Hays, R. D., Bjorner, J. B., Cook, K. F., Crane, P. K., Teresi, J. A., et al. (2007). Psychometric evaluation and calibration of health-related quality of life item banks: Plans for the patient-reported outcomes measurement information system (PROMIS). Medical Care, 45(5 Suppl 1), S22–S31.

    Article  PubMed  Google Scholar 

  17. Weiss, D. J., & Kingsbury, G. (1984). Application of computerized adaptive testing to educational problems. Journal of Educational Measurement, 21(4), 361–375.

    Article  Google Scholar 

  18. Ichimura, S., Ohira, T., Kobayashi, M., Kano, T., Akiyama, T., Orii, M., et al. (2010). Assessment of cognitive function before and after surgery for posterior cranial fossa lesions using computerized and conventional tests. Neurologia Medico-Chirurgica, 50(6), 441–448.

    Article  PubMed  Google Scholar 

  19. Mollica, C. M., Maruff, P., & Vance, A. (2004). Development of a statistical approach to classifying treatment response in individual children with ADHD. Human Psychopharmacology, 19(7), 445–456.

    Article  PubMed  Google Scholar 

  20. Williams, J., Thomas, P. R., Maruff, P., Butson, M., & Wilson, P. H. (2006). Motor, visual and egocentric transformations in children with developmental coordination disorder. Child: Care, Health and Development, 32(6), 633–647.

    CAS  Google Scholar 

  21. Collie, A., Maruff, P., Makdissi, M., McCrory, P., McStephen, M., & Darby, D. (2003). CogSport: reliability and correlation with conventional cognitive tests used in postconcussion medical evaluations. Clinical Journal of Sport Medicine, 13(1), 28–32.

    Article  PubMed  Google Scholar 

  22. Cysique, L. A. J., Maruff, P., Darby, D., & Brew, B. J. (2006). The assessment of cognitive function in advanced HIV-1 infection and AIDS dementia complex using a new computerised cognitive test battery. Archives of Clinical Neuropsychology, 21(2), 185–194.

    Article  PubMed  Google Scholar 

  23. Lai, J. S., Zelko, F., Butt, Z., Cella, D., Kieran, M., Krull, K., et al. (2011). Perceived cognitive function reported by parents of the United States pediatric population. Child’s Nervous System, 27(2), 285–293.

    Article  PubMed  Google Scholar 

  24. Lai, J. S., Butt, Z., Zelko, F., Cella, D., Krull, K. R., Kieran, M. W., et al. (2011). Development of a parent-report cognitive function item bank using item response theory and exploration of its clinical utility in computerized adaptive testing. Journal of Pediatric Psychology, 36(7), 766–779.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Muthen, L. K., & Muthen, B. O. (2006). Mplus user’s guide. Los Angeles, CA: Muthen & Muthen.

    Google Scholar 

  26. Lai, J. S., Crane, P. K., & Cella, D. (2006). Factor analysis techniques for assessing sufficient unidimensionality of cancer related fatigue. Quality of Life Research, 15(7), 1179–1190.

    Article  PubMed  Google Scholar 

  27. Orlando, M., & Thissen, D. (2003). Further examination of the performance of S-X2, an item fit index for dichotomous item response theory models. Applied Psychological Measurement, 27, 289–298.

    Article  Google Scholar 

  28. Samejima, F. (1997). The graded response model. In W. J. van der Linden & R. Hambleton (Eds.), Handbook of modern item response theory (pp. 85–100). New York: Springer.

    Chapter  Google Scholar 

  29. Lai, J-S, Cella, D., Choi, S., Junghaenel, D. U., Christodoulou, C., Gershon, R., & Stone, A. (2011) How item banks and their application can influence measurement practice in rehabilitation medicine: A PROMIS fatigue item bank example. Archives of Physical Medicine and Rehabilitation, 92(Suppl 1), S20–S27.

    Google Scholar 

  30. Lai, J. S., Teresi, J. A., & Gershon, R. (2005). Procedures for the analysis of differential item functioning (DIF) for small sample sizes. Evaluation and the Health Professions, 28, 283–294.

    Article  PubMed  Google Scholar 

  31. Teresi, J. A., Ramirez, M., Lai, J. S., & Silver, S. (2008). Occurrences and sources of differential item functioning (DIF) in patient-reported outcome measures: Description of DIF methods, and review of measures of depression, quality of life and general health. Psychology Science Quarterly, 50(4), 538–612.

    PubMed Central  PubMed  Google Scholar 

  32. Crane, P. K., Gibbons, L. E., Jolley, L., & van Belle, G. (2006). Differential item functioning analysis with ordinal logistic regression techniques: DIFdetect and difwithpar. Medical Care, 44(11 Suppl 3), S115–S123.

    Article  PubMed  Google Scholar 

  33. Crane, P. K., Gibbons, L. E., Ocepek-Welikson, K., Cook, K., Cella, D., Narasimhalu, K., et al. (2007). A comparison of three sets of criteria for determining the presence of differential item functioning using ordinal logistic regression. Quality of Life Research, 16(Suppl 1), 69–84.

    Article  PubMed  Google Scholar 

  34. Choi, S. W., Gibbons, L. E., & Crane, P. K. (2011). lordif: An R package for detecting differential item functioning using iterative hybrid ordinal logistic regression/item response theory and Monte Carlo simulations. Journal of Statistical Software, 39(8), 1–30.

    PubMed Central  PubMed  Google Scholar 

  35. Stevens, J. (1996). Applied multivariate statistics for the social sciences. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  36. MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149.

    Article  Google Scholar 

  37. Silver, C. H. (2000). Ecological validity of neuropsychological assessment in childhood traumatic brain injury. The Journal of head trauma rehabilitation, 15(4), 973–988.

    Article  PubMed  CAS  Google Scholar 

  38. Gioia, G. A., & Isquith, P. K. (2004). Ecological assessment of executive function in traumatic brain injury. Developmental Psychology, 25(1–2), 135–158.

    Google Scholar 

  39. Chaytor, N., & Schmitter-Edgecombe, M. (2003). The ecological validity of neuropsychological tests: A review of the literature on everyday cognitive skills. Neuropsychology Review, 13(4), 181–197.

    Article  PubMed  Google Scholar 

  40. Spooner, D. M., & Pachana, N. A. (2006). Ecological validity in neuropsychological assessment: A case for greater consideration in research with neurologically intact populations. Archives of Clinical Neuropsychology, 21(4), 327–337.

    Article  PubMed  Google Scholar 

  41. Schwartz, B. L., Perfect, T. J., & Perfect, T. (2002). Introduction: Toward an applied metacognition. In T. J. Perfect and B. L. Schwartz (Eds.), Applied metacognition (pp. 1–10). West Nyack, NY: Cambridge University Press.

  42. Flavell, J. H. (1979). Metacognitive and cognitive monitoring: A new area of cognitive developmental inquiry. American Psychologist, 34, 906–911.

    Article  Google Scholar 

  43. Schneider, W., Lockl, K., & Perfect, T. (2002). The development of metacognition knowledge in children and adolescents. T. J. Perfect and B. L. Schwartz (Eds.), Applied metacognition (pp. 224–259). West Nyack, NY: Cambridge University Press.

Download references

Acknowledgments

This study was supported by the National Cancer Institute at the National Institutes of Health (R01CA174452; Principle Investigator: Jin-Shei Lai).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Shei Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, JS., Zelko, F., Krull, K.R. et al. Parent-reported cognition of children with cancer and its potential clinical usefulness. Qual Life Res 23, 1049–1058 (2014). https://doi.org/10.1007/s11136-013-0548-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-013-0548-9

Keywords

Navigation