Skip to main content

Depression and painful conditions: patterns of association with health status and health utility ratings in the general population

Abstract

Purpose

Preference-weighted HRQoL (utility) ratings are increasingly used to guide clinical and resource allocation decisions, but their performance has not always been adequately explored. We sought to examine patterns of health utility ratings in community populations with depressive disorders and painful conditions.

Methods

We used two Canadian cross-sectional health surveys that obtained Comprehensive Health Status Measurement System/Health Utilities Index Mark 3 (HUI3) ratings and identified people with painful conditions and major depression. We estimated the frequency of item endorsements and mean utility ratings in these groups.

Results

Interesting differences between health state ratings and diagnostic categories were noted. For example, 71 % of those professionally diagnosed with migraine reported that they usually have “no pain.” Despite this, utility ratings were lower in those respondents with depressive episodes and in those with painful conditions. Greater than additive reductions in HUI3 scores were noted in most instances where both depressive disorders and painful conditions were present.

Conclusions

Health utility ratings confirm the clinical impression that painful conditions and depressive disorders magnify each other’s impact. Despite weak alignment between the health state definitions incorporated into utility ratings and the diagnostic concepts examined, the HUI3 appeared to capture HRQoL decrements and negative synergies associated with the co-occurrence of depressive episodes and painful conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Brazier, J. (2008). Measuring and valuing mental health for use in economic evaluation. Journal of health services research and policy., 13(Suppl 3), 70–75.

    PubMed  Article  Google Scholar 

  2. 2.

    Rabin, R., Oemar, M., Oppe, M., Janssen, B., & Herdman, M. (2011). EQ-5D-5L user guide. Basic Information on How to Use the EQ-5D-5L Instrument.

  3. 3.

    Brazier, J., Roberts, J., & Deverill, M. (2002). The estimation of a preference-based measure of health from the SF-36. Journal of Health Economics, 21(2), 271–292.

    PubMed  Article  Google Scholar 

  4. 4.

    American Psychiatric Association. (2000). Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR).

  5. 5.

    World Health Organization. (1994). ICD-10 classification of mental and behavioural disorders, with glossary and diagnostic criteria for research.

  6. 6.

    Zivin, K., McCarthy, J. F., McCammon, R. J., Valenstein, M., Post, E. P., Welsh, D. E., et al. (2008). Health-related quality of life and utilities among patients with depression in the Department of Veterans Affairs. Psychiatric Services (Washington, D. C.), 59(11), 1331–1334.

    Article  Google Scholar 

  7. 7.

    Egede, L. E. (2007). Major depression in individuals with chronic medical disorders: prevalence, correlates and association with health resource utilization, lost productivity and functional disability. General Hospital Psychiatry, 29, 409–416.

    PubMed  Article  Google Scholar 

  8. 8.

    Patten, S. B., Beck, C. A., Kassam, A., Williams, J. V. A., Barbui, C., & Metz, L. M. (2005). Long-term medical conditions and major depression: strength of association for specific conditions in the general population. Canadian Journal of Psychiatry, 50, 195–202.

    Google Scholar 

  9. 9.

    Gabilondo, A., Vilagut, G., Pinto-Meza, A., Haro, J. M., & Alonso, J. (2012). Comorbidity of major depressive episode and chronic physical conditions in Spain, a country with low prevalence of depression. General Hospital Psychiatry, 34(5), 510–517.

    PubMed  Article  Google Scholar 

  10. 10.

    Egede, L. E., Ellis, C., & Grubaugh, A. L. (2009). The effect of depression on self-care behaviors and quality of care in a national sample of adults with diabetes. General Hospital Psychiatry, 31(5), 422–427.

    PubMed  Article  Google Scholar 

  11. 11.

    Stein, M. B., Cox, B. J., Afifi, T. O., Belik, S. L., & Sareen, J. (2006). Does co-morbid depressive illness magnify the impact of chronic physical illness? A population-based perspective. Psychological Medicine, 36(5), 587–596.

    PubMed  Article  Google Scholar 

  12. 12.

    Mohr, D. C., Goodkin, D. E., Likosky, W., Gatto, N., Baumann, K. A., & Rudick, R. A. (1997). Treatment of depression improves adherence to interferon β-1b therapy for multiple sclerosis. Archives of Neurology, 54, 531–533.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Lin, E., Katon, W., Von Korff, M., Tang, L., Williams, J. W., Kroenke, K., et al. (2003). Effect of improving depression care on pain and functional outcomes among older adults with arthritis: a randomized controlled trial. JAMA, 290, 2428–2429.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Miller, A. H., Maletic, V., & Raison, C. L. (2009). Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biological Psychiatry, 65(9), 732–741.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  15. 15.

    Eisenberger, N. I., Gable, S. L., & Lieberman, M. D. (2007). Functional magnetic resonance imaging responses relate to differences in real-world social experience. Emotion, 7(4), 745–754.

    PubMed  Article  Google Scholar 

  16. 16.

    Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An FMRI study of social exclusion. Science, 302(5643), 290–292.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Dewall, C. N., Macdonald, G., Webster, G. D., Masten, C. L., Baumeister, R. F., Powell, C., et al. (2010). Acetaminophen reduces social pain: Behavioral and neural evidence. Psychological Science, 21(7), 931–937.

    PubMed  Article  Google Scholar 

  18. 18.

    Strigo, I. A., Simmons, A. N., Matthews, S. C., Craig, A. D., & Paulus, M. P. (2008). Increased affective bias revealed using experimental graded heat stimuli in young depressed adults: evidence of “emotional allodynia”. Psychosomatic Medicine, 70(3), 338–344.

    PubMed Central  PubMed  Article  Google Scholar 

  19. 19.

    Horsman, J., Furlong, W., Feeny, D., & Torrance, G. (2003). The health utilities index (HUI): Concepts, measurement properties and applications. Health Qual Life Outcomes, 1, 54.

    PubMed Central  PubMed  Article  Google Scholar 

  20. 20.

    Williams, A. (1990). EuroQol—A new facility for the measurement of health-related quality of life. Health Policy, 16(3), 199–208.

    Article  Google Scholar 

  21. 21.

    Ware, J. E, Jr, & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Medical Care, 30(6), 473–483.

    PubMed  Article  Google Scholar 

  22. 22.

    McHorney, C. A., Ware, J. E, Jr, & Raczek, A. E. (1993). The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Medical Care, 31(3), 247–263.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Statistics Canada. (2011). Canadian Community Health Survey—Annual Component (CCHS).

  24. 24.

    Kessler, R. C., Andrews, G., Mroczek, D., Ustun, B., & Wittchen, H. U. (1998). The world health organization composite international diagnostic interview Short-Form (CIDI-SF). International Journal of Methods in Psychiatric Research, 7, 171–185.

    Article  Google Scholar 

  25. 25.

    Blazer, D. G., Kessler, R. C., McGonagle, K. A., & Swartz, M. S. (1994). The prevalence and distribution of major depression in a national community sample: The national comorbidity survey. American Journal of Psychiatry, 151, 979–986.

    CAS  PubMed  Google Scholar 

  26. 26.

    Robins, L. N., Wing, J., Wittchen, H. U., Helzer, J. E., Babor, T. F., Burke, J., et al. (1988). The composite international diagnostic interview. An epidemiological instrument suitable for use in conjunction with different diagnostic systems and in different cultures. Archives of General Psychiatry, 45, 1069–1077.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Patten, S. B., Brandon-Christie, J., Devji, J., & Sedmak, B. (2000). Performance of the composite international diagnostic interview short form for major depression in a community sample. Chronic Diseases in Canada, 21, 68–72.

    CAS  PubMed  Google Scholar 

  28. 28.

    Patten, S. B., Wang, J. L., Williams, J. V., Currie, S., Beck, C. A., Maxwell, C. J., et al. (2006). Descriptive epidemiology of major depression in Canada. Canadian Journal of Psychiatry, 51(2), 84–90.

    Google Scholar 

  29. 29.

    Gravel, R., & Béland, Y. (2005). The Canadian community health survey: mental health and wellbeing. Canadian Journal of Psychiatry, 50, 573–579.

    Google Scholar 

  30. 30.

    Centers for Disease Control and Prevention. (2007). The behavioral risk factor surveillance system.

  31. 31.

    Kessler, R. C., Barker, P. R., Colpe, L. J., Epstein, J. F., Gfroerer, J. C., Hiripi, E., et al. (2003). Screening for serious mental illness in the general population. Archives of General Psychiatry, 60(2), 184–189.

    PubMed  Article  Google Scholar 

  32. 32.

    Feeny, D., Furlong, W., Torrance, G. W., Goldsmith, C. H., Zhu, Z., DePauw, S., et al. (2002). Multiattribute and single-attribute utility functions for the health utilities index mark 3 system. Medical Care, 40(2), 113–128.

    PubMed  Article  Google Scholar 

  33. 33.

    Stata Corporation. (2009). Stata, version 11.0. (11.0).

  34. 34.

    Vos, T., Haby, M. M., Berendregt, J. J., Kruijshaar, M., Corry, J., & Andrews, G. (2004). The burden of major depression avoidable by longer-term treatment strategies. Archives of General Psychiatry, 61, 1097–1103.

    PubMed  Article  Google Scholar 

  35. 35.

    Patten, S. B. (2006). A major depression prognosis calculator based on episode duration. Clinical Practice and Epidemiology in Mental Health, 2, 13.

    PubMed Central  PubMed  Article  Google Scholar 

  36. 36.

    Patten, S. B. (2008). Major depression prevalence is very high, but the syndrome is a poor proxy for community populations’ clinical treatment needs. Canadian Journal of Psychiatry, 53(7), 411–419.

    Google Scholar 

  37. 37.

    Kessler, R. C., Andrews, G., Colpe, L. J., Hiripi, E., Mroczek, D. K., & Normand, S. L. (2002). Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychological Medicine, 32, 959–976.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Feng, Y., Bernier, J., McIntosh, C., & Orpana, H. (2009). Validation of disability categories derived from health utilities index mark 3 scores. Health Reports, 20(2), 43–50.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Scott B. Patten.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Patten, S.B., Williams, J.V.A., Lavorato, D.H. et al. Depression and painful conditions: patterns of association with health status and health utility ratings in the general population. Qual Life Res 23, 363–371 (2014). https://doi.org/10.1007/s11136-013-0449-y

Download citation

Keywords

  • Health utility
  • Health-related quality of life
  • Scales, measurement instruments
  • Major depression
  • Major depressive episode
  • Pain
  • Chronic conditions
  • Migraine, arthritis, back pain